
RB24003 -Truss: G1 Qty: 1

Customer: GREEN-R-PANEL SID:

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Typical plate: 2x4

20 21 22 23 24 25 26 1 16 17 18 19 27 29 15 26-0-0

Truss Weight = 168.8 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca ------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

---Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

TC	2×4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x6	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	6	-	7	0	.08
Max	CSI	in	ВC	PANEL	1	-	16	0	.06
Max	CSI	in	Web)	22	-	8	0	.25
	1em.		Τe	en	Comp	0		.CS	I.
TC	1-	8	- 2	241	1:	L 5		0.	80
	8-1	15	- 2	241	1:	L 5		0.	80
BC	1-2	24	- 2	295	-	54		0.	06
	15-2	24	- 2	295	-	54		0.	06
Web	1-	2		130	60	7		0.	03
	2-1	16	4	135	11	79		0.	06
	3-1	17	138 128 129		284 272			0.	04
	4-1	18						0.07	
	5-1	19			2	274			0.15
	6-2	20		133	2	70		0.08	80
	7-2	21		135	30	3		0.	15
	8-2	22		0	3.5	52		0.	25
	9-2	23		135	30	3		0.	15
	10-2	25	- 1	133	2	70		0.	08
	11-2	26	- 1	129	2	74		0.	15
	12-2	27	- 1	128	2	72		0.	07
	13-2	28	- 1	138	28	34		0.	04
	14-1	15	- 1	130	60	7		0.	03
	14-2	29	4	135	1	79		0.	06

Maximum Factored Reaction Summary

		-Reaction Summary(Lbs)	
Jnt	X-Loc-	React -UpWidthReqd -Mat	
1	04-00	624 115 26-00-00	
		249 431 26-00-00	
		249 431 26-00-00	
15	25-08-00	624 115 26-00-00	
		-336 / +336 at Joint 22	
React	tions not	shown: down < 400 and up < 150	
		Summary (plf)	
		React -UpWidth-	
1-	15	94 0 26-00-00 (reduced)	

Unfactored Reaction Summary

Int	Type	Snow	Live	Wind	Dead
	Pinned (Wall)	1596	519	-372	1039

Loads Summary

1.25 Case II

See Loadcase Report for load combinations and additional details.

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
If this truss is exposed to wind load perpendicular to the plane of the
truss, gable studs must be braced according to the Construction
Documents, BCSI-B3, or a gable stud bracing detail matching the design
wind speed shown. Lateral bracing of the truss itself to resist
out-of-plane wind load must be in accordance with the Construction
Documents Documents.

Documents.
The maximum rake overhang length is 12.0".
Gable requires 7/16" OSB sheathing on front from 0-00-00 to 26-00-00; connection details to be provided by the Building Designer.
Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints.
Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLRBRACE.

This truss is not symmetric - proper orientation is critical.

Deflection Summary

TrussSpan	Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.00)	16-17
Vert DL	L/360	L/999(-0.00)	16-17
Vert TL	L/180	L/999(-0.00)	16-17
Horz TL	1.00in	(0.01)	@Jt15

Bracing Data Summary

Chords; continuous except where shown
----- Web Bracing -- CLR -----Single: 20-6 21-7 22-8 23-9 25-10

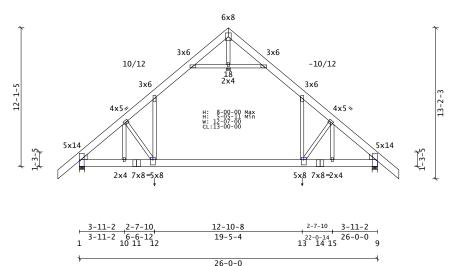
Plate offsets (X, Y):

(None unless indicated below)

Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 12 Truss: G2

Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 2

Truss Weight = 226.5 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Importance Category: Normal Factor Kh applied: Yes
Dur Fac Kd = 1.00 (Snow)
Kd = 1.00 (Live) oading(psf) CSL(S) 30.7 TCSL(S) TCT.T. 0.0 TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

---Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads: Attic Floor:
LL = 40.0 psf, DL = 10.0 psf
Attic Wall: DL = 5.0 psf
Attic Ceiling: DL = 5.0 psf

Material Summary

TC	2x8	SPF	1950/1.7	
BC	2x8	SPF	#2	
	2x8	SPF	2400/2.0 11-14	
Webs	2x4	SPF	#2	
Wedge	2x6	SPF	#2	
TB	2×4	SPF	#2	

Member Forces Summary Max CSI in TC PANEL

				PANEL					0.5
Max	CSI	in	Web)	4	-	18	(0.6
	Mem.		Те	en	Comp	,		. C	SI.
TC	OH-			170		0			.06
10	1-			0	358	-			.19
	2-	3		0	391	77		0	. 64
	3-			Ō	242				. 63
	4-	5	4	128	2	72		0	.50
	5-	6	4	128	2	72		0	.50
	6-	7		0	242	20		0	. 63
	7-	8		0	391	77		0	. 64
	8-	9		0	358	34		0	.19
	9-0	HC		170		0		0	.06
BC	1-1	10	25	538		0		0	. 44
	9-1	15	25	538		0		0	. 44
	10-1	11	25	538		0		0	.56
	11-1	12	25	538		0		0	.52
	12-1	13	25	523		0		0	.53
	13-1	14	25	538		0		0	.52
	14-1	15	25	538		0		0	.56
Web	2-1	10		93	111			0	.18
	2-1			166	58	38			.12
	3-1		23	319		0			.37
	4-1			0	296	52			. 67
	5-1	18		66		0		0	.01
	6-1			0	296				. 67
	7-1			319		0			.37
	8-1		4	471	5.9				.12
I	8-1	15		94	111	13		0	.18

Maximum Factored Reaction Summary

Reaction Summary(Lbs)								
Jnt	X-Loc-	React	-Up	Width-	-Reqd	-Mat		
1	0	3160	0	05-08	04-02	SPF		
9	26-00-00	3160	0	05-08	04-02	SPF		
Max	Horiz =	-381 /	+381	at Joi	int 1			

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead	
1	Pinned (Wall)	913	775	-169	812	
9	H Roll (Wall)	913	775	-169	812	

Loads Summary

Attic space centred at 13-00-00 is loaded with 40.0 psf Live & 10.0 psf Dead Floor, 5.0 psf Dead Wall, 5.0 psf Dead Ceiling loads, and meets deflection criteria L/360.

See Loadcase Report for load combinations and additional details. Unfactored Concentrated Loads $(\mbox{\tt Max}/\mbox{\tt Min})$ Wind Location Dir Desc Dea... 54/54 Dead Mbr Snow Live Web 0/0 0/0 0/0 6-06-12 Vert SidewallDL Web 54/54 0/0 0/0 0/0 19-05-04 Vert Web SidewallDL

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLRBRACE.

Lumber and plating have been applied symmetrically.

Deflection Summary

DCIIC	CLICI	. Cumini	u y		
Truss	Spar	n Limit	Actual (i	in)	Location
Vert	LL	L/360	L/658(-	-0.46)	12-13
Vert	DL	L/360	L/999(-	-0.22)	12-13
Vert	TL	L/180	L/447(-	-0.67)	12-13
Horz	TL	1.00in	(0.03)	@Jt 9
Ohng	TL	OL/120	OL/875(0.05)	1- 1
Ohna	TPT	OT /120	OT /075/	0 0 5 1	0 0

----- Web Bracing -- CLR -----ngle: 4-18 18- 6 Single:

Plate offsets (X, Y):

(None unless indicated below)
Jnt12(0,-01-08), Jnt13(0,-01-08),
Jnt1(01-11,00-07), Jnt9(-01-11,00-07)

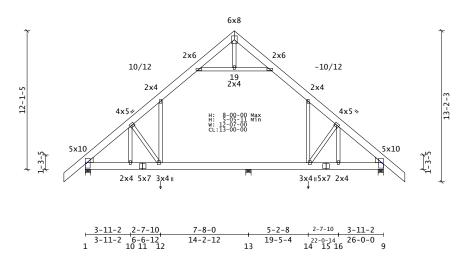
Plate Info

Grip psi Shear pli Tens.Pli Max Min @0 @45 @90 @0 @90 341 249 753 637 589 1144 1130 Plate Grip psi AS Max Min

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 12 Truss: G2 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 2 of 2 Plate Grip psi Shear pli JSI Metal = (INPUT = 1.00) Tens.Pli


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S#18", which indicates a high tension 18 gauge plate.

RB24003 -Qty: 2 Truss: G3

Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

26-0-0

Truss Weight = 206.6 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

---Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads: Attic Floor:
LL = 40.0 psf, DL = 10.0 psf
Attic Wall: DL = 5.0 psf
Attic Ceiling: DL = 5.0 psf

Material Summary

TC	2x8	SPF	#2
BC	2x8	SPF	#2
Webs	2x4	SPF	#2
Wedge	2x6	SPF	#2
TB	2x4	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	2		3		0.59
Max	CSI	in	BC	PANEL	12	-	13		0.90
Max	CSI	in	Wel	0	4	-	19		0.94
N	Mem.		Tr.	en	Com	n		C	SI.
TC	OH-			170	COIII	0			.13
10	1-			0	26	-			.21
	2-			0	23				.59
	3-			96	16				.58
	4-			203		42			.33
	5-			107		28			.50
	6-			89	17				.50
	7-			0	22				.29
	8-			0	24				.20
	9-0			170		0			.13
BC	1-1			867		0			.34
	9-			712		0			.30
	10-			867		0			.43
	11-1			B67		0			.63
	12-			520		0			.90
	13-1	14	1	520		0		0	.90
	14-1	15	1	712		0		0	.60
	15-3	16		712		0		0	.39
Web	2-1	10		291	1	91		0	.04
	2-3	12		353	8	92		0	.20
	3-3	12	1	050		0		0	.17
	4-1	19		125	15	15		0	.94
	5-1	19		64		0		0	.01
	6-1	19		125	15			0	.94
	7-1	14		611		80			.10
	8-1	14		446	6	78		0	.15
	8-3	16		336	3	54		0	.05

Maximum Factored Reaction Summary

Reaction Summary(LDS)								
Jnt	X-Loc-	React	-UpV	Width-	-Reqd	-Mat		
1	0	2472	0	05-08	03-03	SPF		
13	14-02-12	1946	0	05-08	02-02	SPF		
9	26-00-00	2306	0	05-08	03-00	SPF		
Max	Horiz =	-381 /	+381	at Joi	int 1			

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
1	Pinned (Wall)	871	390	-131	620
13	H Roll (Wall)	142	850	-12	423
9	H Roll (Wall)	848	309	-162	580

Loads Summary

Attic space centred at 13-00-00 is loaded with 40.0 psf Live & 10.0 psf Dead Floor, 5.0 psf Dead Wall, 5.0 psf Dead Ceiling loads, and meets deflection criteria $\rm L/360$.

See Loadcase Report for load combinations and additional details. Unfactored Concentrated Loads (Max/Min)
Mbr Dead Snow Live Wind Location Dir Desc 0/0 6-06-12 Vert 54/54 Web 0/0 0/0 Web 54/54 Web 0/0 0/0 0/0 19-05-04 Vert SidewallDL

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Lumber and plating have been applied symmetrically.

Deflection Summary

TrussSp	an Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.26)	12-13
Vert DL	L/360	L/999(-0.09)	12-13
Vert TL	L/180	L/859(-0.35)	12-13
Horz TL	1.00in	(0.04)	@Jt 9
Ohng TL	OL/120	OL/694(0.06)	1- 1
Ohng TL	OL/120	OL/977(-0.05)	9- 9

indicated or rigid sheathing. Web Bracing -- None

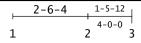
Plate offsets (X, Y):

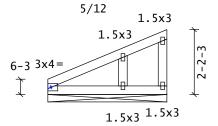
(None unless indicated below) Jnt1(01-11,0), Jnt9(-01-11,0)

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) 5.0 Deg.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.


RB24003 -Truss: LT1 Qty: 1

Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Truss includes non-inventory materials.

Truss Weight = 13.9 lb

Building Code: NBCC2015/TPIC2014 uilding Category: Part4 Gyp ceiling Importance Category: Normal
 mportance Lategory:
 Normal

 oading(psf)
 Factor Kh applied:
 Yes

 CSL(S)
 39.3
 Dur Fac Kd = 1.00 (Snow)

 CLL
 0.0
 Kd = 1.00 (Live)

 CDL
 10.0
 Kd = 1.15 (Wind)
 TCSL(S) TCLL TCDL BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

---Additional Design Checks----2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary TC 2x4 SPF 2×4 SPF

Member Forces Summary

Max	CSI	in	TC PANEL	1 -	2	0.12
Max	CSI	in	BC PANEL	1 -	4	0.06
Max	CSI	in	Web	4 -	2	0.04
1	1em		Ten	Comp		.CSI.
TC	1-	3	102	106		0.12
BC	1-	5	84	0		0.06
Web	2-	4	95	409		0.04
	3-	5	15	70		0.02

Maximum Factored Reaction Summary

Jnt Max Horiz = Reactions not shown: down < 400 and up < 150
---- Reaction Summary (plf) ---Jnt-Jnt React -Up- --Width1- 5 76 0 4-00-00 (reduced)

Unfactored Reaction Summary

Jnt	Ту	pe	Snow	Live	Wind	Dead
	Pinned	(Beam)	384	80	-90	160

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). If this truss is exposed to wind load perpendicular to the plane of the truss, gable studs must be braced according to the Construction Documents, BCSI-B3, or a gable stud bracing detail matching the design wind speed shown. Lateral bracing of the truss itself to resist out-of-plane wind load must be in accordance with the Construction Documents.

The maximum rake overhang length is 12.0".

The maximum rake overhang length is 12.0".

Gable requires 7/16" OSB sheathing on front from 0-00-00 to 4-00-00; connection details to be provided by the Building Designer.

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Plate marked as unavailable in catalogue: 2 - 1.5x3

Plate marked as unavailable in catalogue: 3 - 1.5x3

Plate marked as unavailable in catalogue: 4 - 1.5x3 Plate marked as unavailable in catalogue: 5 - 1.5x3

Deflection Summary

TrussSpan Limit Actual(in)
Vert LL L/360 L/999(-0.)
Vert DL L/360 L/999(-0.) Location L/999(-0.00) 1- 4 L/999(-0.00) 1- 4 Vert TL L/180 Horz TL 1.00in L/999(-0.00)

Bracing Data Summary

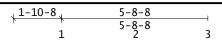
Chords; continuous except where shown Web Bracing -- None

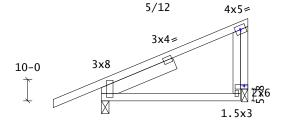
Plate offsets (X, Y):

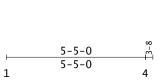
(None unless indicated below) Jnt1(00-11,0)

Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130


Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & Genera Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 20 Truss: LT2 Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25 Page: 1 of 1

Truss Mfr. Contact:

5-8-8

Truss includes non-inventory materials.

Truss Weight = 30.3 lb

Building Code: NBCC2015/TPIC2014 uilding Category: Part4 Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80
Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca = 1.25 Case II 1.25 Case II

----Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x6	SPF	#2
BB	2x4	SPF	#2

Member Forces Summary

Max	CSI	T11	IC PANEL	T -	Τ.	0.43
Max	CSI	in	BC PANEL	1 -	4	0.24
Max	CSI	in	Web	3 -	3	0.20
1	Mem.		Ten	Comp		.CSI.
TC	OH-	1	125	- 0		0.43
	1-	2	38	483		0.29
	2-	3	56	187		0.39
BC	1-	4	166	35		0.24
Web	1-	2	206	215		0.02
	3-	6	154	779		0.09
	4-	6	132	0		0.11
DDI	2	-	2.0	E O		0 00

Maximum Factored Reaction Summary

Reaction Summary (Lbs)									
Jnt	X-I	Loc-	React	-Up-	Widt	thRe	eqd	-Mat	
1		0	979	22	03-	-08 01-	-08	SPF	
-					03-			SPF	
	Horiz				151 at				
	Horiz				151 at		6		
TC B∈	earing	@ .	3 net	react:	ion =	+508			

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
1	Pinned (Beam)	479	55	-68	164
6	H Roll (Beam)	250	52	-66	103

Loads Summary

See Loadcase Report for load combinations and additional details.

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Plate marked as unavailable in catalogue: 4 - 1.5x3

Vertical Step - Ensure adequate drift loads are applied Undefined TC Bearing End Condition - Engineering Verification Required

Deflection Summary

Deflection Summary									
Truss	Span	n Limit	Actual(in)	Location					
Vert	LL	L/360	L/999(-0.04)	1- 4					
Vert	DL	L/360	L/999(-0.03)	1- 4					
Vert	TL	L/180	L/806(-0.08)	1- 4					
Horz	TL	1.00in	(0.03)	@Jt 1					
Ohna	TT	OT /120	OT /732 / 0 06)	1 _ 1					

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

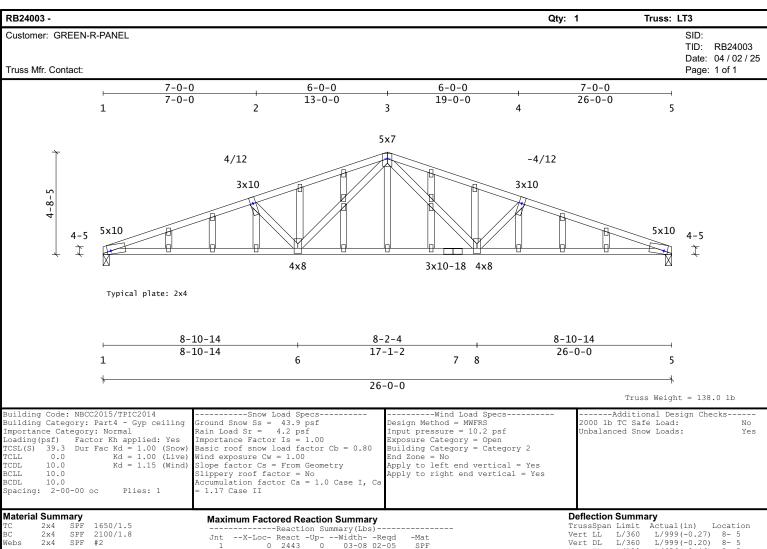

(None unless indicated below) Jnt3(00-01,0), Jnt6(-01-04,-00-08)

Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

Member Forces Summary

Max	CSI	in	TC PANEL	1 -	2	0.84
Max	CSI	in	BC PANEL	1 -	6	0.68
Max	CSI	in	Web	6 -	3	0.29
1	Mem.		Ten	Comp		.CSI.
TC	1-	2	75	5909		0.84
	2-	3	0	5132		0.80
	3-	4	0	5132		0.80
	4-	5	75	5909		0.84
BC	1-	6	5499	39		0.68
	5-	8	5499	0		0.68
	6-	7	3595	0		0.52
	7-	8	3595	0		0.52
Web	2-	6	280	1291		0.19
	3-	6	1820	76		0.29
	3-	8	1820	76		0.29
	4-	8	280	1291		0.19

		-Reacti	on Sum	mary(Lbs	3)	
Jnt	X-Loc-	React	-Up	-Width-	-Reqd	-Mat
1	0	2443	0	03-08	02-05	SPF
5	26-00-00	2443	0	03-08	02-05	SPF
Max	Horiz =	-69 /	+6	9 at Joi	int 1	

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
1	Pinned (Beam)	1022	259	-350	519
5	H Roll (Beam)	1022	260	-350	520

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TFIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). If this truss is exposed to wind load perpendicular to the plane of the truss, gable studs must be braced according to the Construction Documents, BCSI-B3, or a gable stud bracing detail matching the design wind speed shown. Lateral bracing of the truss itself to resist out-of-plane wind load must be in accordance with the Construction Documents.

Documents. The maximum rake overhang length is 12.0". Gable requires 7/16" OSB sheathing on front from 0-00-00 to 26-00-01; connection details to be provided by the Building Designer. Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. The upper top chord (UTC) may be notched 1.5" deep x 3.5" wide at 24"o.c. max. for outlookers. Do not notch in the heel areas marked or anywhere there is a single chord member. Do not cut the connector plates. This truss is not symmetric - proper orientation is critical.

Truss	Span	Limit	Actual(in)	Locat	ion
Vert	LL	L/360	L/999(-0.27)	8-	5
Vert	DL	L/360	L/999(-0.20)	8-	5
Vert	TL	L/180	L/656(-0.46)	8-	5
Horz	TL	1.00in	(0.10)	@Jt	5

Bracing Data Summary

-----Bracing Data------Chords; continuous except where shown Web Bracing -- None


Plate offsets (X, Y):

Trade Unsets (A, 1).
(None unless indicated below)
Jnt1(02-14,01-03), Jnt2(00-08,-01-07),
Jnt3(0,-00-10), Jnt4(-00-08,-01-07),
Jnt5(-02-14,01-03)

Plate Info

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & Genera Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

Mer	nber Fo	rces Sumı	mary		
Max	CSI in	TC PANEL	3 -	4	0.89
Max	CSI in	BC PANEL	1 -	8	0.87
Max	CSI in	Web	1 -	2	0.39
	Mem	Ten	Comp		.CSI.
TC	OH- 1	98	0		0.34
	1- 2	0	2864		0.27
	2- 3	56	5145		0.53
	3- 4	0	4650		0.89
	4- 5	0	4650		0.89
	5- 6	56	5145		0.53
	6- 7	0	2864		0.27
	7-OH	98	0		0.34
BC	1- 8	4825	0		0.87
	7-10	4825	0		0.87
	8- 9	3327	0		0.65
	9-10	3327	0		0.65
Web	1- 2	260	2674		0.39
	3-8	284	1011		0.16
	4-8	1527	79		0.24
	4-10	1527	80		0.24
	5-10	284	1011		0.16
1	6_ 7	260	2671		U 30

Designed as per MBCL2013/FFLC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. This truss is not symmetric - proper orientation is critical.

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg.

JSI Grip = (INPUT = 0.90)

JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 2 Truss: RT1 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1 $\sqrt{1-10-8}$, $\sqrt{2-0-0}$, $\sqrt{2$ 12-0-0 7 12 13 5 1 9 10 11 3x411 8/12 -8/12 9-2-8 3x6 5-9-4 6/12 -6/12 Typical plate: 2x4 ${}_{2}-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0, 2-0-0}$ 19 20 25 26 15 16 17 18 22 23 24 24-0-0 Truss Weight = 104.7 lb ------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c ----Snow Load Specs------Snow Ss = 43.9 psf -----Additional Design Checks---2000 lb TC Safe Load: Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Gyp ceiling Unbalanced Snow Loads: wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 1.25 Case II Material Summary **Deflection Summary Maximum Factored Reaction Summary**

Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 36.1 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind)

mutciiu	Ouiiii	iiui y	
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

14101	11001			Journa	mui y				
Max	CSI	in	TC	PANEL	1	-	1	(0.41
Max	CSI	in	ВC	PANEL	25	-	26	(0.12
Max	Max CSI in Web)	14	-	1	(0.14	
1	Mem		Τe	en	Comp			.C	SI.
TC	1-	7	1	L68		0		0	.41
	7-1	. 3	168			0		0	.41
BC	14-2	20	1	L81	18	31		0	.11
	20-2	26	143		14	143		0	.12
Web	1-1	. 4	86 504			0	.14		
	2-1	. 5	1	L38	26	54		0	.02
	3-1	. 6		99	33	32		0	.03
	4-1	.7	106		312		0	.03	
	5-1	. 8	1	L O 4	30) 6		0	.03
	6-1		1	L15		53			.04
	7-2			0		54			.06
	8-2			L15		53			.04
	9-2	22		L04	30	6 (.03
	10-2	23		L06		12			.03
	11-2			L01		32			.03
	12-2	25	1	L32		54			.02
	13-2	26		70	50) 4		0	.14

Jnt	X-Loc-	React -U	p-	Width-	-Reqd	-Mat
14	0	593 1	70	05-08	01-08	SPF
26	24-00-00	593	48	05-08	01-08	SPF
16	4-00-00	427	57	11-06-08		
17	6-00-00	402	72	11-06-08		
19	10-00-00	456	75	11-06-08		
20	12-00-00	565	0	11-06-08		
21	14-00-00	456	75	11-06-08		
23	18-00-00	402	71	11-06-08		
24	20-00-00	427	60	11-06-08		
Max	Horiz =	-275 /	+2	275 at Jo:	int 14	
Reac	tions not	shown: d	owr	n < 400 ar	nd up <	150
	Reaction	Summary	(p)	Lf)		
Jnt-	Jnt	React -U	p-	Width-		
14-	20	30	0	11-06-08	(reduc	ced)
20-	26	5.9	16	11-06-08	(reduc	red)

Unfactored Reaction Summary

Oillac	omaciorea ricación cammary											
Jnt	Type	Snow	Live	Wind	Dead							
14	Pinned (Wall)	306	18	112	92							
	H Roll (Wall)	919	237	234	466							
	H Roll (Wall)	841	206	-10	399							
26	H Roll (Wall)	306	18	-4	92							

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). If this truss is exposed to wind load perpendicular to the plane of the truss, gable studs must be braced according to the Construction Documents, BCSI-B3, or a gable stud bracing detail matching the design wind speed shown. Lateral bracing of the truss itself to resist out-of-plane wind load must be in accordance with the Construction $\ensuremath{\mathsf{Documents}}$.

The maximum rake overhang length is 12.0".

Gable requires 7/16" OSB sheathing on front from 0-00-00 to 24-00-00; connection details to be provided by the Building Designer.

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Bearing @ 6-02-12 exceeds wall width. Bearing enhancement may be required.
Bearing @ 17-09-04 exceeds wall width. Bearing enhancement may be

required.
Lumber and plating have been applied symmetrically.

TrussSpa	n Limit	Actual(in)	Location
Vert LL	L/360	L/999(0.00)	14-15
Vert DL	L/360	L/999(-0.00)	19-20
Vert TL	L/180	L/999(-0.00)	14-15
Horz TL	1.00in	(0.00)	@Jt26
Ohng TL	OL/120	OL/548(-0.08)	1- 1
Ohng TL	OL/120	OL/558(-0.08)	13-13

Bracing Data Summary
-----Bracing Data----Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

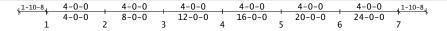
(None unless indicated below)

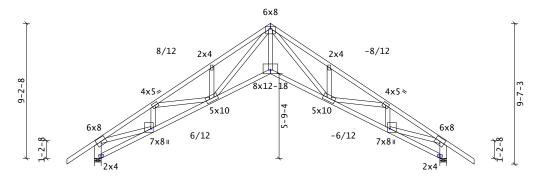
Plate Info

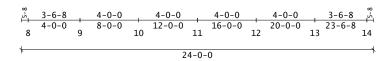
Plate	Grip	psi	She	ar pl	i	Tens.	.Pli
AS	Max	Min	@ 0	@45	@90	@ 0	@90
20G	341	249	753	637	589	1144	1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0

JSI Grip = (INPUT = 0.90)


JSI Metal = (INPUT = 1.00) 5.0 Deg.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.


RB24003 -Qty: 7 Truss: RT2 Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25 Page: 1 of 1

Truss Mfr. Contact:

Truss Weight = 147.8 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 36.1 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca

------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Material Summary

TC	2×4	SPF	#2		
BC	2x4	SPF	#2		
Webs	2x4	SPF	#2		
	2x6	SPF	#2	8-1	14 - 7

Member Forces Summary

Ν	ſax	CSI	in	TC	PANEL	3	-	4	0	.69
M	lax	CSI	in	ВC	PANEL	10	-	11	0	.85
Ν	ſax	CSI	in	Web)	11	-	4	0	.69
	1	1em.		Тζ	en	Com	2		.cs	т
7	 	OH-			168	COM	0			41
ľ		1-		-	19	504	-			58
П		2-			0	584				60
П		3-			105	58				69
ı		4-			105	58				69
П		5-			0	584				60
П		6-			19	50	43			58
ı		7-0	HC	- 1	168		0			41
Ε	вС	8-	9		338	32	29		0.	12
ı		9-	10	4 (506		66		0.	84
ı		10-	11	4 (548		0		0.	85
П		11-	12	4	548		0		0.	85
ı		12-	13	4606		66			84	
П		13-	14		338	32	29		0.	12
V	leb	1-	8		98	230	9		0.	15
ı		1-			184		0			67
П		2-			93	9.	45			10
ı		2-			719		0			11
П		3-			234		37			08
ı		4-			190	6	65			31
П		4-			294	_	0			69
ı		4-			190	6				31
П		5-			234	/ (7			08
П		6-			719		0			11
1		6-			93	9,	45			10
1		7-		4.	184	221	0			67
1		7-	14		98	230	J9		0.	15

Maximum Factored Reaction Summary

		-Reacti	on Summa	ry (Th	= Ñ = = = = = =		
Jnt	X-Loc-	React	-UpV	√idth-	-Reqd	-Mat	
8	0	2398	0	05-08	02-04	SPF	
14	24-00-00	2398	0	05-08	02-04	SPF	
Max	Horiz =	-278 /	+278	at Jo:	int 8		
Max	Horiz =	-278 /	+278	at Jo:	int 14		

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
8	Pinned (Wall)	1001	239	-144	524
14	H Roll (Wall)	1001	239	-144	524

Loads Summary

1.25 Case II

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Lumber and plating have been applied symmetrically.

Deflection Summary

DUIL	CLICI	. Cumini	u y		
Truss	Spar	n Limit	Actual (i	in)	Location
Vert	LL	L/360	L/788(-	-0.35)	10-11
Vert	DL	L/360	L/999(-	-0.19)	10-11
Vert	TL	L/180	L/509(-	0.54)	10-11
Horz	TL	1.00in	(0.63)	@Jt14
Ohng	TL	OL/120	OL/230(0.20)	1- 1
Ohna	TTT	OT /120	OT /220/	0 201	7 7

Plate offsets (X, Y):

(None unless indicated below)
Jnt4(0,-01-07), Jnt8(0,00-01),
Jnt9(-01-10,01-00), Jnt11(0,00-15),
Jnt13(01-10,01-00), Jnt14(0,00-01)

Plate Info

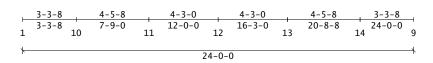

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130 HS18G 344 220 1103 890 979 1829 1808

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 8 Truss: RT3 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1 3-6-0 4-3-0 4-3-0 4-3-0 4-3-0 3-6-0 3-6-0 7-9-0 12-0-0 16-3-0 20-6-0 24-0-0 1 6x8

8/12 -8/12 2x4 2x4 8x12-5/12 -5/128x12-18 8x12-18 4-4-4 3x6 3x6 6x8 6x8 8-0 -6/12 D) 5x10-18 5x10-18

Truss Weight = 161.0 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 36.1 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs--Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads: Yes

Material Summary

TC	2×4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x4	SPF	#2

Member Forces Summary

	Max	CSI	in	TC	PANEL	4		5	C	.77
ı	Max	CSI	in	BC	PANEL	1	-	10	C	.86
	Max	CSI	in	Web)	12	-	5	C	.69
		1em.		Tr.	en	Comp	_		.cs	т.
ı	TC	OH-			125	COM	'n			43
	10	1-		-	0	202	0			49
		2-			0	396				61
			4		0	589				70
		4-			95	596				77
		5-			0	596				77
		6-			0	589				70
		7-			0	396				61
		8-			0	202				49
		9-0			125	202	0			43
	вс	1-1			549		0			86
		9-			549		0			86
		10-			250		Ö			80
		11-1	12		571		0			86
		12-3	13	4 (571		0			86
		13-1	14	42	250		0		0.	80
	Web	1-	2		6	230) 6		0.	24
		3-1	10		60	179	96		0.	19
		3-1	11	10	091		0		0.	17
		4-1			278		9			09
		5-1			560		59			30
		5-1			318		0			69
		5-1			560	66				35
		6-1			278	8 (9			09
ı		7-1		10	091		0			17
		7-1			0	179				19
		8-	9		3	230) 6		0.	24

Maximum Factored Reaction Summary

		-Donati	on Cumm	aru/The	- \		
		Neacti	LOII SUIIIII	ary (mus	> /		
Jnt	X-Loc-	React	-UpU	Width-	-Reqd	-Mat	
1	0	2450	0	05-08	03-06	SPF	
9	24-00-00	2450	0	05-08	03-06	SPF	
May	Woriz -	_163	/ 1163	at Toi	int 1		

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
1	Pinned (Wall)	1036	239	-245	52
9	H Roll (Wall)	1036	240	-245	52

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes Designed as per NBC2013/FFIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Lumber and plating have been applied symmetrically.

Deflection Summary

Deflection Summary									
TrussS	pan	Limit	Actual (in)	Locat	ior			
Vert I	L	L/360	L/811(-0.34)	11-1	2			
Vert D	L	L/360	L/999(-0.19)	11-1	2			
Vert I	'L	L/180	L/521(-0.53)	11-1	2			
Horz T	'L	1.00in	(0.38)	@Jt	9			
Ohng I	L O	L/120	OL/700(0.06)	1-	1			
Ohna T	'Τ. O	T /120	OT. / 700 (0.061	Q_	a			

Plate offsets (X, Y):

Trade Onsets (X, 1).

(None unless indicated below)

Jnt2(-00-07,-00-03), Jnt3(00-03,-00-07),

Jnt5(0,-01-07), Jnt7(-00-03,-00-07),

Jnt8(00-07,-00-03), Jnt10(-00-02,00-07),

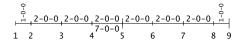
Jnt12(0,00-15), Jnt14(00-02,00-07),

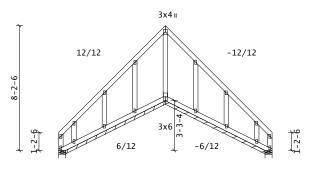
Jnt1(0,-00-05), Jnt9(0,-00-05)

Plate Info

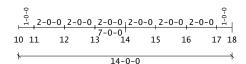
Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130 HS18G 344 220 1103 890 979 1829 1808

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 beg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.


RB24003 -Truss: T1 Qty: 1

Customer: GREEN-R-PANEL SID:


TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 2

Typical plate: 1.5x3

Truss includes non-inventory materials.

Truss Weight = 65.5 lb

Building	Code:	NBC	2201	5/TI	PIC2014	
Building	Catego	ory:	Part	-4 -	- Gyp ce	eiling
Importanc	ce Cate	egory	y: No	orma	al	
Loading (p	osf)	Fact	tor I	Kh a	applied:	Yes
TCSL(S)	26.2	Dur	Fac	Kd	= 1.00	(Snow)
TCLL	0.0			Kd	= 1.00	(Live)
TCDL	10.0			Kd	= 1.15	(Wind)
BCLL	10.0					
BCDL	10.0					
Spacing:	2-00	-00 d	oc]	Plies: 1	

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca ---Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

	• • • • • • • • • • • • • • • • • • • •		
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

				o oa					
Max	CSI	in	TC	PANEL	1	-	2		0.08
Max	CSI	in	ВC	PANEL	10	-	11		0.09
Max	CSI	in	Web		14	-	5		0.10
1	Mem		Τe	en	Comp	,		.С	SI.
TC	1-	5	1	L95	24	19		0	.08
	5-	9	1	L95	24	19		0	.08
BC	10-1	. 4	1	L67	12	25		0	.09
	14-1	. 8	1	L67	12	25		0	.09
Web	1-1	. 0	1	L38	21	13		0	.09
	2-1	.1	1	L74	21	L 4		0	.02
	3-1	.2	1	L47	26	52		0	.03
	4-1	. 3	1	L57	29	90		0	.05
	5-1	. 4		0	43	37		0	.10
	6-1	. 5	1	L57	29	90		0	.05
	7-1	. 6	1	L47	26	52		0	.03
	8-1	.7	1	L74	21	L 4		0	.02
	9-1	. 8	1	L38	21	13		0	.09

Maximum Factored Reaction Summary

	React	ion Summ	ary(Lbs)	
JntX-I	Loc- React	-Up	Width-	-Reqd	-Mat
10	0 337	246	05-08	01-08	SPF
18 14-00	0-00 337	246	05-08	01-08	SPF
11 1-00	0-00 288	207 6	-06-08		
14 7-00	0-00 559	0 6	-06-08		
17 13-00	0-00 288	207 6	-06-08		
	= -213				
Max Horiz	= -213	/ +213	at Joi	nt 18	
Reactions	not shown	: down <	400 an	d up <	150
React	tion Summa:	ry (plf)			
Jnt-Jnt	React	-Up	Width-		
10- 14	58	0 6	-06-08	(reduc	ed)
14- 18	113	34 6	-06-08	(reduc	ed)

Unfactored Reaction Summary

Omac	Jinactorea reaction Gainmary										
Jnt	Type		Snow	Live	Wind	Dead					
10	Pinned	(Wall)	20	5	222	16					
	H Roll	(Wall)	420	149	257	357					
	H Roll	(Wall)	373	118	33	284					
18	H Roll	(Wall)	20	5	222	16					

Loads Summary

1.25 Case II

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
If this truss is exposed to wind load perpendicular to the plane of the truss, gable studs must be braced according to the Construction Documents, BCSI-B3, or a gable stud bracing detail matching the design wind speed shown. Lateral bracing of the truss itself to resist out-of-plane wind load must be in accordance with the Construction Documents.
The maximum rate country.

The maximum rake overhang length is 12.0".

Gable requires 7/16" OSB sheathing on front from 0-00-00 to 14-00-00; connection details to be provided by the Building Designer.

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Plate marked as unavailable in catalogue: 1 - 1.5x3
Plate marked as unavailable in catalogue: 2 - 1.5x3
Plate marked as unavailable in catalogue: 3 - 1.5x3 Plate marked as unavailable in catalogue: 4 - 1.5x3
Plate marked as unavailable in catalogue: 6 - 1.5x3 Plate marked as unavailable in catalogue: 7 - 1.5x3
Plate marked as unavailable in catalogue: 8 - 1.5x3
Plate marked as unavailable in catalogue: 9 - 1.5x3 Plate marked as unavailable in catalogue: 9 - 1.5x3 Plate marked as unavailable in catalogue: 10 - 1.5x3

Deflection Summary

TrussSpan	Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.00)	13-14
Vert DL	L/360	L/999(-0.00)	13-14
Vert TL	L/180	L/999(-0.00)	13-14
Horz TL	1.00in	(0.00)	@Jt18

Bracing Data Summary

-----Bracing Data------Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

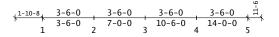
(None unless indicated below)

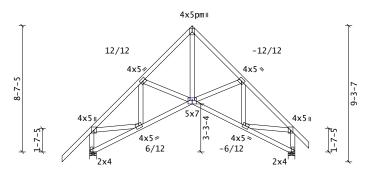
Plate Info

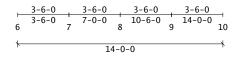
Grip psi Shear pli Tens.Pli Max Min @0 @45 @90 @0 @90 341 249 753 637 589 1144 1130 Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) 5.0 Deg.

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.

RB24003 -Truss: T1 Qty: 1 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 2 of 2 Plate marked as unavailable in catalogue: 11 - 1.5x3
Plate marked as unavailable in catalogue: 12 - 1.5x3
Plate marked as unavailable in catalogue: 13 - 1.5x3
Plate marked as unavailable in catalogue: 16 - 1.5x3
Plate marked as unavailable in catalogue: 16 - 1.5x3
Plate marked as unavailable in catalogue: 17 - 1.5x3
Plate marked as unavailable in catalogue: 18 - 1.5x3 Bearing @ 3-08-12 exceeds wall width. Bearing enhancement may be required. Bearing @ 10-03-04 exceeds wall width. Bearing enhancement may be required. Lumber and plating have been applied symmetrically.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate. gauge plate.


RB24003 -Truss: T2 Qty: 1


Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind)

BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80

Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

Truss Weight = 83.8 lb -----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Material Summary

	• • • • • • • • • • • • • • • • • • • •		
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	1	0.35
Max	CSI	in	BC	PANEL	8	-	9	0.24
Max	CSI	in	Web)	8	=	3	0.20
1	1em.		Те	en	Comp	5		.CSI.
TC	OH- 1			179		0		0.35
	1-	2		0	146	58		0.27
	2-			29	126			0.19
	3-			43	126	56		0.19
	4-	5		0	14	1472		0.19
	5-0	HC	90		0			0.09
BC	6-	7	2	293	30)2		0.11
	7-	8	10	089	-	78		0.23
	8-	9	1102		83			0.24
	9-1	10		312	28	33		0.11
Web	1-	6		22	128	32		0.13
	1-	7	9	952		0		0.15
	2-	7		63	20	9		0.03
	2-	8	- 2	246	23	33		0.04
	3-	8	12	233		0		0.20
	4-	8	- 2	242	2	74		0.05
	4-	9		73	2:	15		0.03
	5-	9	9	964		0		0.15
	5-3	10		0	114	19		0.12

Maximum Factored Reaction Summary

	Reaction Summary (Lbs)											
Jnt	X-Loc-	React ·	-UpV	Vidth-	-Reqd	-Mat						
6	0	1345	0	05-08	02-11	SPF						
10	14-00-00	1213	0	05-08	02-07	SPF						
Max	Horiz =	-239 /	+255	at Jo:	int 6							
Max	Horiz =	-239 /	+255	at Jo:	int 10							

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	469	139	-113	401
10	H Roll (Wall)	410	140	-98	365

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements.

Deflection Summary

Delle	CUO	ı Summe	uу	
Truss	Spar	n Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.03)	7- 8
Vert	DL	L/360	L/999(-0.02)	7- 8
Vert	TL	L/180	L/999(-0.05)	7- 8
Horz	TL	1.00in	(0.05)	@Jt10
Ohng	TL	OL/120	OL/470 (-0.10)	1- 1
Ohna	TT.	OT. /120	OT. / 981 (0 02)	5- 5

Plate offsets (X, Y):

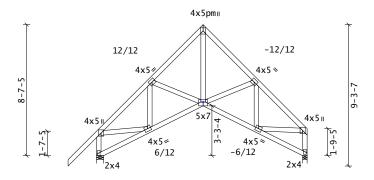
(None unless indicated below)
Jnt8(0,-00-09)

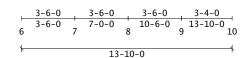
Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg.
JSI Grip = (INPUT = 0.90)
JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 7 Truss: T3


Customer: GREEN-R-PANEL

TID: RB24003

Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Truss Weight = 81.9 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs-----Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary TC 2x4 SPF SPF

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	1	0.35	
Max	CSI	in	BC	PANEL	7	-	8	0.23	
Max	CSI	in	Web)	8	-	3	0.19	
,	1em.		Те	Ten		2		.CSI.	
TC	OH- 1		179		Comp	n		0.35	
10	1-			4	145			0.27	
	2-			32	124			0.19	
	3-			63	124			0.20	
	4-			0	140			0.19	
BC	6-			263)1		0.11	
	7-	8	1(075		79		0.23	
	8-	9	1057		78			0.23	
	9-1	L 0		310	251			0.10	
Web	1-	6		33	12	73		0.13	
	1-	7	9	939		0		0.15	
	2-	7		62	20) 4		0.03	
	2-	8	2	246	23	36		0.04	
	3-	8	1:	199		0		0.19	
	4-	8	- 2	228	25	59		0.04	
	4-	9		79	24	14		0.03	
	5-	9	9	921		0		0.15	
	5_1	١.		Λ	101	3.3		0 11	

Maximum Factored Reaction Summary

Reaction Summary (Lbs)											
Jnt	X-Loc-	React	-UpV	√idth-	-Reqd	-Mat					
6	0	1336	0	05-08	02-10	SPF					
10	13-10-00	1093	0	03-08	01-12	SPF					
Max	Horiz =	-211 /	+255	at Joi	nt 6						
Max	Horiz =	-211 /	+255	at Joi	nt 10						

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	466	138	-112	398
10	H Roll (Wall)	361	138	-81	329

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements.

Deflection Summary

Delle	CLIOI	i Juillille	u y	
Truss	Span	n Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.02)	7- 8
Vert	DL	L/360	L/999(-0.02)	7- 8
Vert	TL	L/180	L/999(-0.05)	7- 8
Horz	TL	1.00in	(0.05)	@Jt10
Ohna	TPT	OT /120	OT / 460 / 0 10)	1 1

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- None

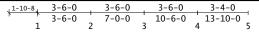
Plate offsets (X, Y):

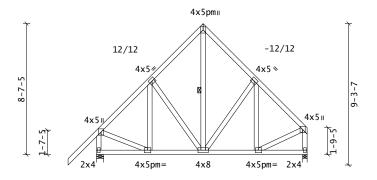
(None unless i indicated below)

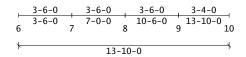
Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Truss: T4 Qty: 1


Customer: GREEN-R-PANEL

TID: RB24003

Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0

Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Truss Weight = 91.7 lb

Material Summary TC 2x4 SPF SPF

Spacing: 2-00-00 oc

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	1	0.35
Max	CSI	in	BC	PANEL	7	-	8	0.17
Max	CSI	in	Web	0	8	-	4	0.14
								007
	1em.		Ten		Comp	Comp		.CSI.
TC	OH-			179		0		0.35
	1-	2		16	102	21		0.26
	2-	3	- 1	156	82	21		0.18
	3-	4	- 1	150	82	23		0.19
	4-	5		14	98	31		0.19
BC	6-	7	2	211	25	54		0.07
	7-	8	(533	2	25		0.17
	8-	9	-	522	3	30		0.16
	9-1	L 0	- 2	254	2:	11		0.07
Web	1-	6		0	12	71		0.13
	1-	7	(573		0		0.11
	2-	7		95		99		0.02
	2-	8	- 2	202	3:	15		0.13
	3-	8	(509	12	24		0.09
	4-	8	- 2	200	34	10		0.14
	4-	9		82	13	32		0.03
	5-	9	-	577		0		0.11
	5_1	١.		Ω	101	3.1		0 10

Maximum Factored Reaction Summary

	Reaction Summary (Lbs)											
Jnt	X-Loc-	React	-UpV	√idth-	-Reqd	-Mat						
6	0	1336	0	05-08	02-10	SPF						
10	13-10-00	1093	0	03-08	01-12	SPF						
Max	Horiz =	-211 /	+255	at Joi	int 6							
Max	Horiz =	-211 /	+255	at Joi	int 10							

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	466	138	-111	398
10	H Roll (Wall)	361	138	-84	329

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements. Continuous Lateral Restraint (CLR) rows require diagonal bracing per DAMPECIBERGER.

Deflection Summary

Defiection Summary									
Truss	Spar	n Limit	Actual(in)	Location					
Vert	LL	L/360	L/999(-0.01)	7- 8					
Vert	DL	L/360	L/999(-0.01)	8- 9					
Vert	TL	L/180	L/999(-0.02)	7- 8					
Horz	TL	1.00in	(0.00)	@Jt10					
Ohna	TPT	OT /120	OT / / / 2 / 0 10)	1 1					

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- CLR ------8- 3 Single:

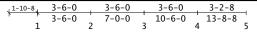
Plate offsets (X, Y):

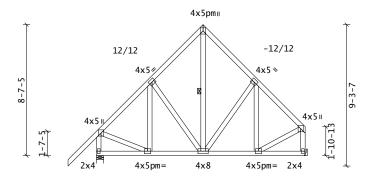
(None unless indicated below)

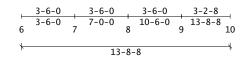
Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 2 Truss: T5


Customer: GREEN-R-PANEL

TID: RB24003

Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0

Plies: 1

----Snow Load Specs-----Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Truss Weight = 91.5 lb

Material Summary

	• • • • • • • • • • • • • • • • • • • •		
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Spacing: 2-00-00 oc

Member Forces Summary

Max	COI	T11	T C	PANEL	1	_	_	0.50
Max	CSI	in	ВC	PANEL	7	-	8	0.17
Max	CSI	in	Web)	6	-	1	0.13
	1em.		Tr.	en	Comp	_		.CSI.
TC	OH-			179	COM	n		0.35
10								
	1-			17	101			0.26
	2-	3	- 1	156	81	L 0		0.18
	3-	4		151	8:	L 0		0.19
	4-	5		15	94	13		0.18
BC	6-	7	- 2	206	25	55		0.07
	7-	8	(526	2	28		0.17
	8-	9		599	3	34		0.16
	9-1	LO	2	255	20)6		0.07
Web	1-	6		0	126	51		0.13
	1-	7	(565		0		0.10
	2-	7		96	9	97		0.02
	2-	8	2	202	31	L 6		0.13
	3-	8		591	12	23		0.09
	4-	8	- 1	199	31	15		0.13
	4-	9		79	15	51		0.04
	5-		-	665		0		0.10
	5-1	LO		0	102	24		0.11

Maximum Factored Reaction Summary

	Reaction Summary (Lbs)								
Jnt	X-Loc-	React -	Up1	Width	-Regd	-Mat			
6	0	1326	0	05-08 (02-10	SPF			
10	13-08-08	1083	0	01-08	HGR	SPF			
Max	Horiz =	-207 /	+255	at Join	nt 6				
Max	Horiz =	-207 /	+255	at Join	nt 10				

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	463	137	-110	395
10	H Roll(Hanger)	358	137	-82	326

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements. Continuous Lateral Restraint (CLR) rows require diagonal bracing per DAMPECIBERGER.

Deflection Summary

Defiection Summary									
Truss	Span	Limit	Actual(in)	Location					
Vert	LL	L/360	L/999(-0.01)	7- 8					
Vert	DL	L/360	L/999(-0.01)	8- 9					
Vert	TL	L/180	L/999(-0.02)	7-8					
Horz	TL	1.00in	(0.00)	@Jt10					
Ohna	TT.	OT. /120	OT. /441 (=0 10)	1 - 1					

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown ----- Web Bracing -- CLR ------ingle: 8- 3 Single:

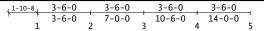
Plate offsets (X, Y):

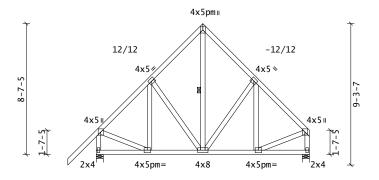
(None unless indicated below)

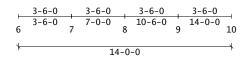
Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 2 Truss: T6


Customer: GREEN-R-PANEL

TID: RB24003

Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0

Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs-----Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80

wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

Truss Weight = 92.0 lb -----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary TC 2x4 SPF SPF

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	1	0.35
Max	CSI	in	BC	PANEL	7	-	8	0.17
Max	CSI	in	Web	0	8	-	4	0.16
	Mem.		Τe	en	Comp)		.CSI.
TC	OH-	1	- 1	179		0		0.35
	1-	2		15	103	35		0.26
	2-	3	- 1	156	83	37		0.18
	3-	4	- 1	148	84	10		0.20
	4-	5		12	103	32		0.20
BC	6-	7	2	217	25	53		0.07
	7-	8	(543	2	22		0.17
	8-	9	(554	2	26		0.17
	9-1	10	2	253	2:	L 7		0.07
Web	1-	6		0	128	34		0.13
	1-	7	(583		0		0.11
	2-	7		94	10)1		0.02
	2-	8	2	202	31	13		0.13
	3-	8	(533	12	26		0.10
	4-	8	2	201	31	73		0.16
	4-	9		96	10	7		0.03
	5-	9	(595		0		0.11
	5-1	10		0	104	11		0.10

Maximum Factored Reaction Summary

Reaction Summary(Lbs)							
	X-Loc-					-Mat	
6	0	1349	0	05-08	02-11	SPF	
10	14-00-00	1106	0	05-08	02-03	SPF	
Max	Horiz =	-217 /	+254	at Joi	nt 6		
Max	Horiz =	-217 /	+254	at Joi	nt 10		

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	470	140	-113	402
10	H Roll (Wall)	366	139	-86	333

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements. Continuous Lateral Restraint (CLR) rows require diagonal bracing per DAMPECIBERGER.

Deflection Summary

Defiection Summary								
Truss	Spar	n Limit	Actual(in)	Location				
Vert	LL	L/360	L/999(-0.01)	8- 9				
Vert	DL	L/360	L/999(-0.01)	8- 9				
Vert	TL	L/180	L/999(-0.02)	8- 9				
Horz	TL	1.00in	(0.00)	@Jt10				
Ohna	TPT	OT /120	OT / / / 2 / 0 10)	1 1				

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- CLR -----Single: 8-3

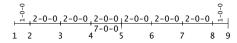
Plate offsets (X, Y):

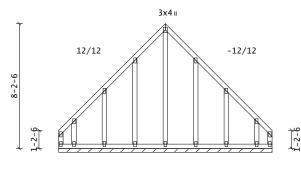
(None unless indicated below)

Plate Info

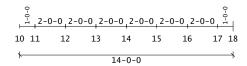
Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Truss: T7 Qty: 1

Customer: GREEN-R-PANEL SID:


TID: RB24003

Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Typical plate: 2x4

Truss Weight = 79.3 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 26.2 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Material Summary

TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	3	-	4	0.08
Max	CSI	in	ВC	PANEL	10	- 1	.1	0.10
Max	CSI	in	Web)	14	-	5	0.32
I.	1em.		Тζ	en	Comp			.CSI.
TC	1-			203	10			0.08
10								
	5-	-		203	10			0.08
BC	10-1	18	- 1	146		70		0.10
Web	1-1	10		95	20	7		0.08
	2-1	11		171	2:	12		0.02
	3-1	12		149	26	53		0.05
	4-1	13		155	28	39		0.12
	5-1	14		0	31	70		0.32
	6-1	15	- 1	155	28	39		0.12
	7-1	16	- 1	149	26	53		0.05
	8-1	17		171	2:	12		0.02
	9-1	18		95	20	7		0.08

Maximum Factored Reaction Summary

Reaction Summary(Lbs)	
JntX-Loc- React -UpWidthReqd -Mat	
11 1-00-00 284 202 14-00-00	
14 7-00-00 407 0 14-00-00	
17 13-00-00 284 202 14-00-00	
Max Horiz = -213 / +213 at Joint 14	
Reactions not shown: down < 400 and up < 150	
Reaction Summary (plf)	
Jnt-Jnt React -UpWidth-	
10- 18 89 0 14-00-00 (reduced)	

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
	Pinned (Wall)	732	280	-203	675

Loads Summary

See Loadcase Report for load combinations and additional details. Dead loads have been slope adjusted for any pitch 12.00/12 or greater

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
If this truss is exposed to wind load perpendicular to the plane of the
truss, gable studs must be braced according to the Construction
Documents, BCSI-B3, or a gable stud bracing detail matching the design
wind speed shown. Lateral bracing of the truss itself to resist
out-of-plane wind load must be in accordance with the Construction
Documents Documents.

Documents. The maximum rake overhang length is 12.0". Gable requires 7/16" OSB sheathing on front from 0-00-00 to 14-00-00; connection details to be provided by the Building Designer. Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints.

Lumber and plating have been applied symmetrically.

Deflection Summary

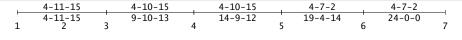
Delle	CHOIL	Julillio	u y	
Truss	Span	Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.00)	11-12
Vert	DL	L/360	L/999(-0.00)	11-12
Vert	TL	L/180	L/999(-0.00)	11-12
Uorz	TT	1 00in	(0 00)	0 T+10

Bracing Data Summary

Web Bracing -- None

Plate offsets (X, Y):

(None unless indicated below)


Plate Info

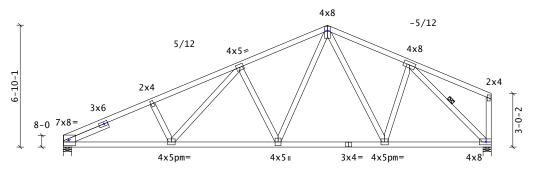

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) 5.0 Deg.

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 1 Truss: T8 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1

Truss Weight = 118.9 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live) TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs-----Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads: Yes

Material Summary

TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x4	SPF	#2

Member Forces Summary

wei	libei	гυ	ı ce:	s Sullii	iiai y			
Max	CSI	in	TC	PANEL	3	-	4	0.68
Max	CSI	in	ВC	PANEL	1	-	8	0.76
Max	CSI	in	Web)	6	-	12	0.54
	1em.		Τe	en	Comp			.CSI.
TC	1-	2		0	225	8		0.25
	2-	3		53	408	32		0.39
	3-	4		78	389	9		0.68
	4-	5		86	287	74		0.60
	5-	6		71	227	78		0.49
	6-	7	1	181	10	7		0.61
BC	1-	8	36	581	6	8		0.76
	8-	9	30)22		0		0.66
	9-1	L O	19	948		0		0.49
	10-1	11	19	948		0		0.53
	11-1	L2	18	358		0		0.51
Web	1-	2		68	201	4		0.24
	3-	8	1	L72	4.9	94		0.06
	4-	8	9	902	6	59		0.14
	4-	9	2	237	135	52		0.40
	5-	9	15	598	11	13		0.25
	5-1	11	3	388	38	34		0.28
	6-1	11	6	513	20	3		0.10
	6-1	L2		0	266	55		0.54
	7-1	L2		79	27	78		0.05

Maximum Factored Reaction Summary

	(Lbs)Reaction Summary									
	X-Loc-					-Mat				
1						SPF				
12	24-00-00		0	05-08	03-08	SPF				
14	******	C1	/ 110	00	1					

Unfactored Reaction Summary

Jilla	mactored Reaction Julimary											
Jnt	Type	Snow	Live	Wind	Dead							
1	Pinned (Wall)	985	239	-305	479							
12	H Roll (Wall)	943	240	-323	480							

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements. Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLRBRACE.

Deflection Summary

TrussSpan	Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.13)	8- 9
Vert DL	L/360	L/999(-0.08)	8- 9
Vert TL	L/180	L/999(-0.21)	8- 9
Horz TL	1.00in	(0.07)	@Jt12

Bracing Data Summary

Chords; continuous except where shown Single: 6-12

Plate offsets (X, Y):

(None unless indicated below)
Jnt2(-00-07,-00-03), Jnt5(0,-01-01),
Jnt12(-00-08,0), Jnt1(00-08,0)

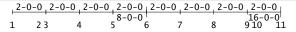
Plate Info

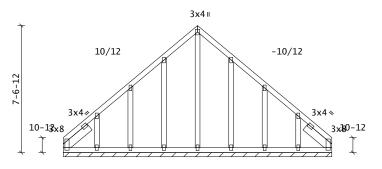
Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg.
JSI Grip = (INPUT = 0.90)
JSI Metal = (INPUT = 1.00)

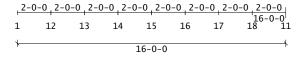
NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 6 Truss: T9 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1 2-5-0 4-10-15 4-7-2 4-11-15 4-10-15 4-7-2 9-10-13 14-9-12 19-4-14 24-0-0 4-11-15 2 4x5 II -5/12 5/12 4x8 5x7 6 - 10 - 11.5x3 1.5x3 3x6 3-0-2 7x8= 8-0 I 3x4= 3x6 3x4= 3x4= 4x8 6 - 0 - 125-11-12 5-11-12 5-11-12 18-0-4 1.0 6 - 0 - 1212-0-8 24-0-0 8 q 11 1 12 24-0-0 Truss includes non-inventory materials. Truss Weight = 119.9 lb Building Code: NBCC2015/TPIC2014 ----Snow Load Specs------Snow Ss = 43.9 psf -----Wind Load Specs----------Additional Design Checks-----2000 lb TC Safe Load: No Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Building Category: Part4 Gyp ceiling Importance Category: Normal Unbalanced Snow Loads: Factor Kh applied: Yes
Dur Fac Kd = 1.00 (Snow)
Kd = 1.00 (Live) cading(psf) TCSL(S) wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca TCT.T. 0.0 TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 1.25 Case II **Material Summary Deflection Summary** Maximum Factored Reaction Summary TrussSpan Limit Actual(in)
Vert LL L/360 L/999(-0. SPF Location 2x4 --Reaction Summary(Lbs) L/999(-0.14) 8- 9 L/999(-0.09) 8- 9 2×4 SPF #2 Jnt --X-Loc- React -Up- --Width- -Reqd 1 0 2760 38 05-08 03-13 12 24-00-00 2251 0 05-08 03-08 -Mat Vert DL Webs Vert TL L/180 L/999(-0.23) Horz TL 1.00in (0.07) Ohng TL OL/120 OL/243(-0.24) L/999(-0.23) 8- 9 (0.07) @Jt12 Slider 2×4 SPF SPF -38 / +157 at Joint Max Horiz = Member Forces Summary 1- 1 **Bracing Data Summary** Max CSI in TC PANEL Max CSI in BC PANEL 5 **Unfactored Reaction Summary** 0.89 -----Bracing Data-------Chords; continuous except where shown Type Pinned (Wall) H Roll (Wall) Live Wind Jnt Snow Dead Max CSI in Web 239 239 540 477 1229 -337 --- Web Bracing -- CLR ------rle: 6-12 Comp .CSI. Single: OH- 1 1- 2 2- 3 162 0.72 **Loads Summary** 2105 0.40 Plate offsets (X, Y): See Loadcase Report for load combinations and additional details. 50 0.55 4069 (None unless indicated below)
Jnt2(-00-07,-00-03), Jnt12(-00-08,0), 3-74 3899 0.76 66 Jnt1(00-08.0) Designed as per NBCC2015/TPIC2014 and applicable provincial codes 5-72 2273 0.49 Designed as per MBCL2013/FFLC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Continuous Lateral Restraint (CLR) rows require diagonal bracing per 6-1-107 Plate Info 3673 66 0.89 Grip psi Shear pli Tens.Pli Max Min @0 @45 @90 @0 @90 341 249 753 637 589 1144 1130 Plate Grip psi 8- 9 9-10 2903 0 0.65 AS D-WEBCLEBRACE. 10-11 1943 0 0.52 Plate marked as unavailable in catalogue: 3 - 1.5x3
Plate marked as unavailable in catalogue: 7 - 1.5x3 Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) Web 1- 2 108 2581 0.31 3- 8 198 554 95 928 4- 9 206 1168 5- 9 5-11 0.23 375 390 0.27 601 6-11 204 0.09 79 7-12 0.05


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Truss: T10 Qty: 1

Customer: GREEN-R-PANEL


TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Typical plate: 2x4

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Importance Category: Normal oading(psf) CSL(S) 30.7 TCSL(S)

ractor Kh applied: Yes
Dur Fac Kd = 1.00 (Snow)
Kd = 1.00 (Live)
Kd = 1.15 (Wind) TCLL 0.0 TCDL 10.0 BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80

Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

------Wind Load Specs------Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Truss Weight = 90.4 lb

Material Summary

TC	2×4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x6	SPF	#2

Member Forces Summary

Max	CSI	ın	TC	PANEL	4	_	5	(J. U
Max	CSI	in	BC	PANEL	1	_	12	(0.0
Max	CSI	in	Web)	15	_	6	(0.1
1	1em.		Τe	en	Comp	0		.CS	SI.
TC	1-	6	1	L78	13	36		0.	.08
	6-1	11	1	L78	13	36		0.	.08
BC	1-1	11	1	L58	- 6	51		0.	.05
Web	1-	2	1	103	26	51		0.	.01
	3-1	12	1	L99	24	17		0.	.03
	4-1	13	1	L22	2	73		0.	.05
	5-1	14	1	141	30) 4		0.	.12
	6-1	15		0	2	74		0.	.19
	7-1	16	1	141	30) 4		0.	.12
	8-1	17	1	L22	2	73		0.	.05
	9-1	18	1	L99	24	17		0.	.03
	10 1	1 1	- 4	0.0	2.	- 1		0	0.1

Maximum Factored Reaction Summary

-Mat

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead					
	Pinned (Wall)	982	320	-224	640					

Loads Summary

See Loadcase Report for load combinations and additional details.

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

If this truss is exposed to wind load perpendicular to the plane of the
truss, gable studs must be braced according to the Construction
Documents, BCSI-B3, or a gable stud bracing detail matching the design
wind speed shown. Lateral bracing of the truss itself to resist
out-of-plane wind load must be in accordance with the Construction Documents.

The maximum rake overhang length is 12.0".

Gable requires 7/16" OSB sheathing on front from 0-00-00 to 16-00-00; Gable requires Gable requires //10° USB sheatning on front from U-00-00 to 10-00-00 connection details to be provided by the Building Designer. Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Lumber and plating have been applied symmetrically.

Deflection Summary

Truss	Span	Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.00)	12-13
Vert	DL	L/360	L/999(-0.00)	12-13
Vert	TL	L/180	L/999(-0.00)	12-13
Horz	TL	1.00in	(0.00)	@Jt 1

Bracing Data Summary

-----Bracing Data------Chords; continuous except where shown Web Bracing -- None

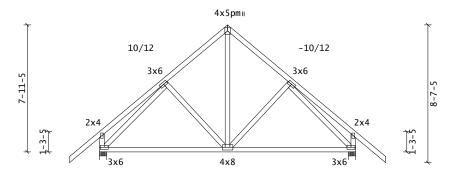
Plate offsets (X, Y):

(None unless indicated below)

Plate Info

Grip psi Shear pli Tens.Pli Max Min @0 @45 @90 @0 @90 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) 5.0 Deg.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 1 Truss: T11 Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Truss Weight = 87.6 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

---Snow Load Specs--now Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

Max		in	ВС	PANEL PANEL	0	- - -	1 7 2	0. 0. 0.	70
N	Mem.			en 170	Comp	0		.CSI	
	1-	2	2	231	18 112			0.3	30
	3-	4		110	112	20		0.2	25
	5-0	DΗ		170		0		0.3	36
BC	6- 7-	8		902 902		17 0		0.7	0
Web	1- 2-	-	-	175 0	55 131			0.0	
	2- 3-			256 338	31	12		0.1	
	4 – 4 –		2	256 0	31 131			0.1	
	5-	8		175	5.5	53		0.0)5

Maximum Factored Reaction Summary

		-keacti	on Sum	шагу (ьря	3)		-
Jnt	X-Loc-	React	-Up	-Width-	-Reqd	-Mat	
6	0	1526	0	05-08	02-06	SPF	
8	16-00-00	1526	0	05-08	02-06	SPF	
Max	Horiz =	-241 /	+24	1 at Joi	int 6		

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned (Wall)	606	160	-108	364
8	H Roll (Wall)	606	159	-108	364

Loads Summary

See Loadcase Report for load combinations and additional details.

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
Plates located at TC pitch breaks meet the prescriptive minimum size
requirement to transfer unblocked diaphragm loads across those joints.
A "pm" next to the plate size indicates that the plate has been user
modified; see Plate Offsets for any special positioning requirements.
Lumber and plating have been applied symmetrically.

Deflection Summary

Truss	Span	Limit	Actual(in)	Locat	ior
Vert	LL	L/360	L/999(-0.12)	6-	7
Vert	DL	L/360	L/999(-0.12)	6-	7
Vert	TL	L/180	L/771(-0.23)	6-	7
Horz	TL	1.00in	(0.02)	@Jt	8
Ohng	TL	OL/120	OL/567(-0.08)	1-	1
Ohng	TL	OL/120	OL/564 (-0.08)	5-	5

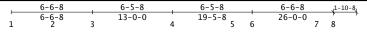
Bracing Data Summary
-----Bracing Data----Chords; continuous except where shown Web Bracing -- None

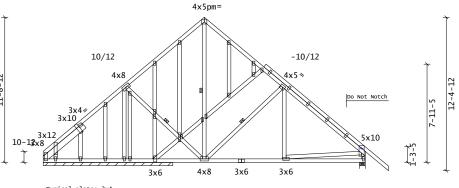
Plate offsets (X, Y):

(None unless indicated below)

Plate Info

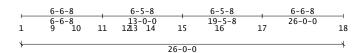
Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130


Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & Genera Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.

RB24003 -Truss: T12 Qty: 1 Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25


Truss Mfr. Contact: Page: 1 of 1

Typical plate: 2x4

1.25 Case II

Truss Weight = 220.2 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs--Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca

-----Additional Design Checks--2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

UTC	2x4	SPF	#2
LTC	2x4	SPF	#2
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2
Slider	2x6	SPF	#2
FC	2x4	SPF	#2

Member Forces Summary Max CSI in TC PANEL - 8

Max	CSI	in	ВC	PANEL	16	-	17		0.52
Max	CSI	in	Web)	11	-	3		0.74
	1em.		Tr.	en	Comp	_		C	SI.
TC	1-			264	58				.72
1 C									
	3-	-		299	10				.73
	4-			294	108				.78
	6-	8		L13	185				.80
	8-0	ΡH	- 1	L70		0		0	.36
BC	1-	9	4	127	34	15		0	.11
	9-1	LO	4	127	34	15		0	.08
	10-1	11	4	127	34	15		0	.06
	11-1	12	4	127	34	15		0	.06
	12-1		4	127	34	15		0	.12
	14-1			127		15			.17
	15-1			264	-	0			.34
	16-1			264		0			.52
	17-1			0		0			.27
Web	3-1			13	158	39			.74
	3-1			579					.11
	4-1			128	23				.17
	6-1			316	102				.39
					102	0			
	6-1			358		-			.05
	8-1			268		0			.20
	8-1	L 8	-	111	176	28		0	.17

Maximum Factored Reaction Summary

				ummary(LDS)	
Ċ	Int	X-Loc-	React -Up-	WidthReqd -Mat	
	18	26-00-00	1884 65	05-08 03-12 SPF	
	1	04-00	660 155	10-05-08	
	11	6-06-08	1689 0	10-05-08	
Ν	lax	Horiz =	-371 / +3	339 at Joint 1	
F	Reac	tions not	shown: down	n < 400 and up < 150	
-		Reaction	Summary (p.	lf)	
ċ	Int-	-Jnt	React -Up-	Width-	
	1 -	- 14	27 0	10-05-08 (reduced)	

Unfactored Reaction Summary

Jnt	Type		Snow	Live	Wind	Dead
	Pinned	(Wall)	981	338	-220	657
18	H Roll	(Wall)	778	181	-143	427

Loads Summary

See Loadcase Report for load combinations and additional details.

0.80

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
If this truss is exposed to wind load perpendicular to the plane of the
truss, gable studs must be braced according to the Construction
Documents, BCSI-B3, or a gable stud bracing detail matching the design
wind speed shown. Lateral bracing of the truss itself to resist
out-of-plane wind load must be in accordance with the Construction
Documents Documents.

Documents.
The maximum rake overhang length is 12.0".
Gable requires 7/16" OSB sheathing on front from 0-00-00 to 26-00-00; connection details to be provided by the Building Designer.
Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements.
Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-MPRCIBERRACE.

The upper top chord (UTC) may be notched 1.5" deep x 3.5" wide at 24"o.c. max. for outlookers. Do not notch in the heel areas marked or anywhere there is a single chord member. Do not out the connector plates. Attach stacked chords with 2x4 20 ga. plates, u.n.o.

Deflection Summary

Truss	Span	Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.07)	17-18
Vert	DL	L/360	L/999(-0.07)	17-18
Vert	TL	L/180	L/999(-0.13)	17-18
Horz	TL	1.00in	(0.01)	@Jt18
Ohng	TL	OL/120	OL/912(-0.05)	8 - 8

Bracing Data Summary

-----Bracing Data------Chords; continuous except where shown Web Bracing -- CLR ------3-15 15- 4 15- 6

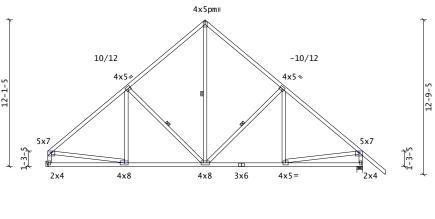
Plate offsets (X, Y):

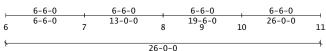
(None unless indicated below) Jnt8(0,-02-08)

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg.
JSI Grip = (INPUT = 0.90)
JSI Metal = (INPUT = 1.00)


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 9 Truss: T13 Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

-----Additional Design Checks--2000 lb TC Safe Load: Unbalanced Snow Loads:

Truss Weight = 143.7 lb

Material Summary

SPF 2x42×4 SPF

Member Forces Summary

ľ	Иaх	CSI	in	TC	PANEL	1	-	2	0.87
ľ	Max	CSI	in	BC	PANEL	7	-	8	0.56
N	Иах	CSI	in	Web)	2	_	8	0.38
Г									
L		1em.		Те	en	Comp	5		.CSI.
1	ГC	1-	2		10	244	17		0.87
ı		2-	3		199	183	30		0.85
П		3-	4		199	182	29		0.80
ı		4-			13	244			0.78
ı		5-0			170	2-1-	0		0.36
١,	зс	6-			366	33			0.26
1	50					٥.			
П		7-			738		0		0.56
П		8-			732		0		0.47
П		9-1	10	1	732		0		0.55
ı		10-1	11		0		0		0.26
V	veb	1-	6		15	198	38		0.20
ı		1-	7	1	756		0		0.28
ı		2-	7	- 2	245		52		0.04
ı		2-	8		321	93	33		0.38
ı		3-	8	1.3	377		30		0.22
ı		4-			319	89			0.36
ı		4-1			245		50		0.04
1		5-1			750	,	0		0.28
П				1		000	-		
		5-1	LΙ		38	222	<i>∠ /</i>		0.22

Maximum Factored Reaction Summary

	Reaction Summary (Lbs)								
	Keaction Summary (LDS)								
Jnt	X-Loc-	React	-Up	-Width-	-Reqd	-Mat			
6	0	2105	0	01-08	HGR	SPF			
11	26-00-00	2344	0	05-08	04-11	SPF			
34	***	200	/ 122/	:					

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
6	Pinned(Hanger)	798	260	-177	518
11	H Roll (Wall)	917	260	-174	566

Loads Summary

See Loadcase Report for load combinations and additional details.

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
Plates located at TC pitch breaks meet the prescriptive minimum size
requirement to transfer unblocked diaphragm loads across those joints.
A "pm" next to the plate size indicates that the plate has been user
modified; see Plate Offsets for any special positioning requirements.
Continuous Lateral Restraint (CLR) rows require diagonal bracing per
DESCRIPBECT D-WEBCLRBRACE.

Deflection Summary

Defiection Summary									
Truss	Spar	n Limit	Actual(in)	Location					
Vert	LL	L/360	L/999(-0.08)	6- 7					
Vert	DL	L/360	L/999(-0.07)	6- 7					
Vert	TL	L/180	L/999(-0.15)	6- 7					
Horz	TL	1.00in	(0.02)	@Jt11					
Ohna	TPT	OT /120	OT /211 / 0 211	E E					

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- CLR ------2- 8 8- 3 8- 4 Single:

Plate offsets (X, Y):

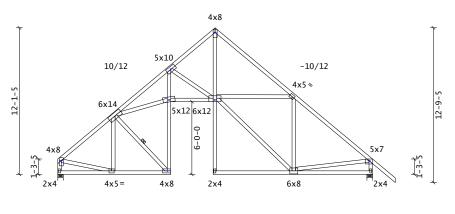
(None unless indicated below)
Jnt1(0,-00-14), Jnt5(0,-00-14), Jnt7(-00-08.0)

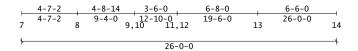
Plate Info

Grip psi Shear pli Tens.Pli Max Min @0 @45 @90 @0 @90 341 249 753 637 589 1144 1130 Plate Grip psi AS

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 5 Truss: T14


Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind)

BCLL 10.0

Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs--Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80

wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Truss Weight = 182.5 lb

Material Summary TC 2x4 SPF 1650/1.5 2×4 SPF

Member Forces Summary

	CSI	in		PANEL PANEL		-	5 11 10	C).74).89).80
TC		2 3 4	Т	0 0 0	Comp 240 646 325	55 52		0.	30 55 23
ВC	4- 5- 6-0 7- 8-	6 OH 8	3	0 9 170 366 739	33° 245 33°	0		0.	74 62 30 14 40
Web	10-1 12-1 13-1	11 13 14		356 4 0	202	0 0		0.	89 38 29 20
	1- 2- 2- 2-1	8	1	775 L48 34 973	17 248			0.	28 04 53 80
	3-1 3-1 4-1 5-1	11 11 11	34	246 114 157 716		0		0. 0. 0.	65 73 59 11
	5-1 6-1 6-1 9-1	13 14 10 12	18	94 755 35 372 136	223	033		0.	80 28 22 43 05
	11-1	13	23	354		0		0.	38

Maximum Factored Reaction Summary

		Reacti	ion Summ	arv(Lbs	s)	
	X-Loc-					-Mat
7		2105	0	05-08		SPF
14	26-00-00	2344	0	05-08	04-11	SPF
14	******	200	/ 1226		- 7	

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
7	Pinned (Wall)	798	259	-177	518
14	H Roll (Wall)	917	260	-174	566

Loads Summary

1.25 Case II

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes Designed as per MBCL2013/FFLC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLEBRACE.

Vertical Step - Ensure adequate drift loads are applied

Deflection Summary

Delle	CLIOI	ı Juiiiii	u y	
Truss	Span	Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.26)	9-10
Vert	DL	L/360	L/999(-0.17)	12-13
Vert	TL	L/180	L/706(-0.43)	9-10
Horz	TL	1.00in	(0.49)	@Jt14
Ohna	TTT	OT /120	OT /106/ 0 2/1	6 6

Bracing Data Summary

-----Bracing Data-------Chords; continuous except where shown Web Bracing -- CLR ------2- 9 Single:

Plate offsets (X, Y):

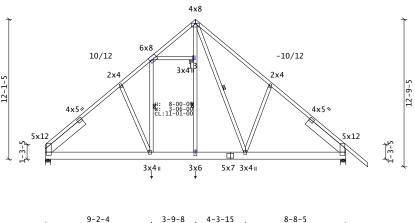
(None unless indicated below)
Jnt1(0,-01-02), Jnt3(00-05,00-05),
Jnt4(0,-01-02), Jnt6(0,-00-14),
Jnt9(-00-08,0), Jnt10(0,00-08), Jnt11(0,01-04)

Plate Info

Plate Grip psi Shear pli Tens.Pli
AS Max Min @0 @45 @90 @0 @90
20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 2 Truss: T15

Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 2

12-11-12 9 10 11 12 26-0-0 26-0-0

Truss Weight = 190.5 lb

Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c Gyp ceiling Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: Yes TCSL(S) 30.7 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live) TCLL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

----Snow Load Specs------Snow Ss = 43.9 psf Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca ---Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads: Attic Floor:
LL = 40.0 psf, DL = 10.0 psf
Attic Wall: DL = 5.0 psf
Attic Ceiling: DL = 5.0 psf

Material Summary

TC	2x4	SPF	#2	
	2x4	SPF	1650/1.5	5-8
BC	2x8	SPF	1950/1.7	
	2x8	SPF	#2 11-8	
Webs	2x4	SPF	#2	
Slider	2x8	SPF	#2	
TB	2x4	SPF	#2	

Member Forces Summary

CSI	in	TC	PANEL	5	-	6	0	.80
CSI	in	ВC	PANEL	9	-	10	0	.56
CSI	in	Web)	10	-	13	0	. 62
		Τe						
			-					
			-					
			-					
			-	162				
					-			
		1						
		4						
T 0 - 1	LЗ	20	190	16	o /		0.	62
	CSI CSI CSI 1- 2- 3- 4- 5- 6- 7- 8-: 10-: 11-: 1- 3- 4- 4- 5- 5- 6- 7- 8-: 10-: 11-: 5- 6- 7- 7- 8-: 10-: 11-: 11-: 11-: 11-: 11-: 11-: 11	CSI in	CSI in BC CSI in Wel 4em Te 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-OH 1-9 18-12 19-10 11-12 10-11 11-12 11-	1-2 0 2-3 0 3-4 0 4-5 12 5-6 70 6-7 0 7-8 0 8-0H 170 1-9 1848 8-12 1952 9-10 1681 10-11 1655 1-2 119 3-9 290 4-9 149 4-13 16 5-12 657 5-13 2113 6-12 400 7-8 37	CSI in BC PANEL 9 CSI in Web 10 dem Ten Comm 1-2 0 166 2-3 0 25; 3-4 0 23; 4-5 12 22; 5-6 73 25; 6-7 0 26; 7-8 0 162 8-OH 170 1-9 1848 8-12 1952 9-10 1681 10-11 1655 11-12 1655 1-2 119 100 3-9 290 5; 1-2 119 100 3-9 290 5; 1-3 113 16 5-12 400 76 5-13 2113 66-12 400 76	CSI in BC PANEL 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	CSI in BC PANEL 9 - 10 CSI in Web 10 - 13 #em Ten Comp 1-2 0 1661 2-3 0 2510 3-4 0 2359 4-5 12 2203 5-6 73 2567 6-7 0 2632 7-8 0 1625 8-OH 170 0 1-9 1848 0 8-12 1952 0 9-10 1681 0 10-11 1655 0 11-12 1655 0 11-12 1655 0 11-12 1655 0 11-12 1655 0 1-2 119 1060 3-9 290 530 4-9 149 326 4-13 16 95 5-12 657 437 5-13 2113 78 6-12 400 700 7-8 37 1323	CSI in BC PANEL 9 - 10 0 CSI in Web 10 - 13 0 fem Ten Comp CS 1-2 0 1661 0. 2-3 0 2510 0. 3-4 0 2359 0. 4-5 12 2203 0. 5-6 73 2567 0. 6-7 0 2632 0. 7-8 0 1625 0. 8-OH 170 0 0. 1-9 1848 0 0. 8-12 1952 0 0. 9-10 1681 0 0. 10-11 1655 0 0. 11-12 1655 0 0. 1-2 119 1060 0. 3-9 290 530 0. 4-9 149 326 0. 4-13 16 95 0. 5-12 657 437 0. 5-13 2113 78 0. 6-12 400 700 0. 7-8 37 1323 0.

Maximum Factored Reaction Summary

		-Reacti	Lon Summ	nary(Lbs	3)	
Jnt	X-Loc-	React	-Up	Width-	-Reqd	-Mat
1	0	2476	0	05-08	03-08	SPF
8	26-00-00	2620	0	05-08	03-11	SPF
Max	Horiz =	-384 /	+338	at Joi	int 1	

Unfactored Reaction Summary

Jnt	Type	pe Snow		Wind	Dead	
1	Pinned (Wall)	798	434	-174	67	
8	H Roll (Wall)	917	389	-171	683	

Loads Summary

1.25 Case II

Attic space centred at 11-01-00 is loaded with 40.0 psf Live & 10.0 psf Dead Floor, 5.0 psf Dead Wall, 5.0 psf Dead Ceiling loads, and meets deflection criteria L/360.

See Loadcase Report for load combinations and additional details. Unfactored Concentrated Loads $(\mbox{\tt Max}/\mbox{\tt Min})$ Wind Location Dir Desc реас 80/80 Dead Mbr Snow Live Web 0/0 0/0 0/0 9-02-04 Vert SidewallDL Web 80/80 0/0 0/0 0/0 12-11-12 Vert Web SidewallDL

Designed as per NBCC2015/TPIC2014 and applicable provincial codes Designed as per MBCL2013/FFLC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLRBRACE.

Partial reinforcing member does not meet TPIC Clause B.1(5). Full reinforcing member required

Deflection Summary

Dellection	i Juillille	u y	
TrussSpan	n Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.24)	1- 9
Vert DL	L/360	L/999(-0.17)	1- 9
Vert TL	L/180	L/732(-0.41)	1- 9
Horz TL	1.00in	(0.08)	@Jt 1
Ohna TI	OT /120	OT / 126 / 0 101	

Bracing Data Summary

Dracing Data Summary
------Bracing Data-----Chords; continuous except where shown
Attic tie beam (TB) & walls; bracing
indicated or rigid sheathing. -----Purlins-----

------#Bays
B3 4-01-00 07-04 8-08-01 2
B4 5-07-00 07-04 11-07-01 2
------ Web Bracing -- CLR ------ingle: 9-4 10-13 5-12 WB4 Single: 9- 4 10 Single: Joint 13

Plate offsets (X, Y):

(None unless indicated below)
Jnt4(01-07,01-13), Jnt5(-00-04,-01-07),
Jnt10(0,-00-12), Jnt13(0,00-04)

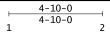
Plate Info

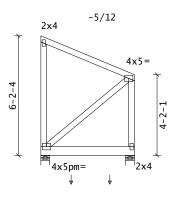
Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

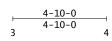
Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg.

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 2 Truss: T15 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 2 of 2 Plate Grip psi Shear pli JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) Tens.Pli


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.


RB24003 -Qty: 1 Truss: TG1


Customer: GREEN-R-PANEL

TID: RB24003 Date: 04 / 02 / 25

Truss Mfr. Contact: Page: 1 of 1

Truss Weight = 33.2 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: No
TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca 1.25 Case II

------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes

-----Additional Design Checks----2000 lb TC Safe Load: No Unbalanced Snow Loads:

Material Summary

TC	2x4	SPF	#2
BC	2x6	SPF	1650/1.5
Webs	2x4	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	2	0.62
Max	CSI	in	ВC	PANEL	3	-	4	0.87
Max	CSI	in	Web	Web		-	1	0.21
Mem		Tε	en	Comp			.CSI.	
TC	1-	2	1	132		132		0.62
BC	3-	4		62		19		0.87
Web	1-	3	77		345			0.21
	2-	3	2	210		47		0.03
	2-	4		96	3	345		0.09

Maximum Factored Reaction Summary

		Neacti	OII Ju	липату (пре)		
Jnt	X-Loc-	React	-Up-	Width-	-Reqd	-Mat	
3	0	1470	160	05-08	02 - 04	SPF	
4	4-10-00	1601	50	05-08	03-03	SPF	
Max	Horiz =	-252 /	+1	46 at Joi	nt 3		

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
3	Pinned (Wall)	525	284	-105	403
4	H Roll (Wall)	568	314	-37	443

Loads Summary

See Loadcase Report for load combinations and additional details. Unfactored Concentrated Loads $(\mbox{\tt Max}/\mbox{\tt Min})$ Mbr Dead Snow Live Wind Location Dir Desc Transfer loads: BC 327/327 358/105 137/137 -82/-208 1-06-12 Vert 327/327 358/105 137/137 -82/-208 3-06-12 Vert

Notes

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. A "pm" next to the plate size indicates that the plate has been user modified; see Plate Offsets for any special positioning requirements.

Deflection Summary

Delle	CHOIL	Summe	ıı y		
Truss	Span	Limit	Actual(in)	Location	
Vert	LL	L/360	L/594(-0.09)	3- 4	
Vert	DL	L/360	L/662(-0.08)	3- 4	
Vert	TL	L/180	L/313(-0.17)	3- 4	
Horz	TT.	1 00in	(0 00)	0.T+ 4	

Bracing Data Summary

-----Bracing Data------Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

(None unless indicated below)

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 1 Truss: TG2 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 2 4-7-1 4-7-2 4-7-2 5-7-9 4-7-1 2-Ply 10-2-11 14-9-12 19-4-14 24-0-0 6x8 -5/12 5/12 7x10 4x5 ≈ 6-10-8x12-18 5x8 3-0-2 8-0^{8x16-18} 3x8 7x10 10x12 6x16-1855 10x12 3x8 ₽ 5-7-9 4-7-1 4-7-1 4-7-2 4-7-2 19-4-14 10 10-2-11 14-9-12 24-0-0 8 11 12 1 24-0-0 Truss Weight = 439.6 lb Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp c ----Snow Load Specs-----Snow Ss = 43.9 psf -----Wind Load Specs----------Additional Design Checks---2000 lb TC Safe Load: Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Gyp ceiling Unbalanced Snow Loads: Yes wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 1-00-00 oc Plies: 2 1.25 Case II

Building Category: Part4 - Gyp ceiling Importance Category: Normal Loading(psf) Factor Kh applied: No TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow) TCLL 0.0 Kd = 1.00 (Live)

Material Summary

TC	2x6	SPF	1650/1.5	
	2x6	SPF	#2 4-6	
BC	2x8	SPF	1950/1.7	
Webs	2x4	SPF	#2	
	2x6	SPF	#2 9-4 11-6 12-6	
Wedge	2x4	SPF	#2	

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	2	0.64
Max	CSI	in	BC	PANEL	1	_	7	0.96
Max	CSI	in	Web)	11	-	6	0.94
	1em.		Tr.	en	Comp	_		.CSI.
	1-				2652			
TC				530				0.64
	2-		-	315	208			0.41
	3-			72	1461			0.36
	4-			96	1460			0.53
	5-			0	1392	24		0.51
BC	1-	7	244	129	50)2		0.96
	7-	8	244	129	50)2		0.83
	8-	9	192	249	25	55		0.74
	9-1	L O	127	786		0		0.59
	10-1	11	127	786		0		0.53
	11-1	L2		17		5		0.28
Web	2-	7	54	189	14	10		0.48
	2-	8	2	279	691	13		0.55
	3-	8	8.9	907	2	73		0.78
	3-	9	3	379	948	35		0.93
	4-	9	108	339	Į.	54		0.70
	5-	9	28	333	164	18		0.37
	5-1	11	1.2	284	279	91		0.31
	6-1		145			0		0.94
	6-1			0	1236	-		0.50
	0 -			0	120	, ,		0.50

Maximum Factored Reaction Summary

		-keaction Si	ımmary(LDS	3)		
Jnt	X-Loc-	React -Up-	Width-	-Reqd	-Mat	
1	0	13236 283	05-08	07-03**	SPF	
12	24-00-00	14519 50	05-08	11-13**	SPF	
Max	Horiz =	-23 / +	+60 at Joi	int 1		
(**)	indicates	Reqd Width	> actual	Width;	enhancement	may be required.
Buile	ding Design	ner to provi	ide adequa	ate bear	ing size or	enhancement.

T 2 ---

Unfactored Reaction Summary

JIIL	Type	SHOW	TTAG	WING	Dead
1	Pinned (Wall)	5136	3005	-1146	3158
12	H Roll (Wall)	5549	3378	-1281	3537

Loads Summary

		-													
See	Loadcase	Report	for	load	com	bina	tio	ns	and	add	dit:	ional	deta	ails.	
Unf	actored Co	ncentr	ated	Loads	s (M	ax/M	lin)								
Mbr	D∈	ead		Snow		I	ive			Wi	ind	Loca	tion	Dir	Desc
Tr	ansfer loa	ads:													
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	2-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	4-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	6-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	8-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	10-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	12-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	14-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	16-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	17-0	0-12	Vert	T13
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	19-0	0-12	Vert	T14
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	21-0	0-12	Vert	T14
BC	518/5	518	798,	/238		260/	260		-17	7/-3	386	23-0	0-12	Vert	T14
2-P	LY TRUSS E	Pastene	r Sp	acina											
						7		£ _ 1	1	- /				-11.	
ras	ten each p	DIA CO	the .	aujac	ent	DIA	as	TOT	TOM.	S (I)	SWS	Stag	gere	a):	

TC 2x6, 2-row(s) of 3 1/4" Gun Nails @ 12.0" o.c. TC 2x6, 2-row(s) of 3 1/4" Gun Nails @ 12.0" o.c. ** WB 2x4, 1-row(s) of 3 1/4" Gun Nails @ 9.0" o.c. ** WB 2x4, 2-row(s) of 3 1/4" Gun Nails @ 9.0" o.c. ** Use additional fasteners of the same type (u.n.o.) within +/-12" of the location(s) indicated (except where approved hangers are used with fasteners that transfer the load to all plies): BC:2-00-12, 6, BC:4-00-12, 6, BC:6-00-12, 6

BC:8-00-12, 6, BC:10-00-12, 6, BC:12-00-12, 6 BC:14-00-12, 6, BC:16-06-12, 15, BC:19-00-12, 6 BC:21-00-12, 6, BC:23-00-12, 6

Refer to TD-FRM-0005 for cluster fastening spacing limits.

Notes

Deflection Summary

Truss	Span	Limit	Actual(in)	Location
Vert	LL	L/360	L/999(-0.23)	7- 8
Vert	DL	L/360	L/999(-0.14)	7- 8
Vert	TL	L/180	L/762(-0.36)	7- 8
Horz	TL	1.00in	(0.08)	@Jt12

Bracing Data Summary

Chords; continuous except where shown
----- Web Bracing -- CLR ----Single: 2-8 3-9

Plate offsets (X, Y):

Final Unibers (A, 1):
(None unless indicated below)
Jnt2(00-03,00-01), Jnt6(-00-08,-00-05),
Jnt7(0,-01-08), Jnt8(0,-00-08),
Jnt9(0,-00-08), Jnt11(02-08,-00-08),
Jnt1(02-06,00-14)

Grin nsi Shear nli

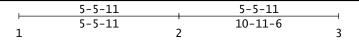
LIUCC	OTTP	POI	UIIC	ur pr	_	T CITO		
AS	Max	Min	@ 0	@45	@90	@ 0	@90	
20G	341	249	753	637	589	1144	1130	
HS18G	344	220	1103	890	979	1829	1808	
S518G	203	123	1103	890	979	2466	1809	

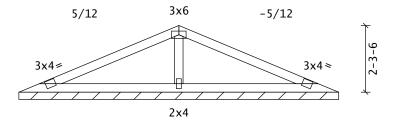
Tens Pli

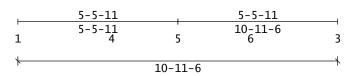
Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00) 5.0 Deg.

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate.

RB24003 -Truss: TG2 Qty: 1 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 2 of 2 Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints.
Continuous Lateral Restraint (CLR) rows require diagonal bracing per D-WEBCLRBRACE.
Bearing @ 02-12 exceeds wall width. Bearing enhancement may be required.
Bearing @ 23-09-04 exceeds wall width. Bearing enhancement may be required.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18 gauge plate. gauge plate.


RB24003 -Qty: 1 Truss: V1 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1 5-5-11 4-0-0 4-0-0 5-5-11 9-5-11 5-5-11 13-5-11 18-11-6 1 2 3x6 5/12 -5/122x4 2x4 3 - 11 - 63x4= 3x4 ≈ 2x4 5-5-11 4-0-0 4-0-0 5-5-11 5-5-11 9 - 5 - 1113-5-11 18-11-6 12 11 18-11-6 Truss Weight = 52.4 lb Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp co Importance Category: Normal ----Snow Load Specs-Snow Ss = 43.9 psf -----Additional Design Checks----2000 lb TC Safe Load: No Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Gyp ceiling Unbalanced Snow Loads: ractor Kh applied: Yes
Dur Fac Kd = 1.00 (Snow)
Kd = 1.00 (Live)
Kd = 1.15 (Wind) coading(psf) TCSL(S) wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca TCLL 0.0 TCDL 10.0 BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 1.25 Case II Material Summary TC 2x4 SPF **Deflection Summary Maximum Factored Reaction Summary** TrussSpan Limit Actual(in)
Vert LL L/360 L/999(-0.)
Vert DL L/360 L/999(-0.) Location -----Reaction Summary(Lbs)------X-Loc- React -Up- --Width- -Reqd 1-02-10 601 36 18-11-06 L/999(-0.00) 1- 6 L/999(-0.00) 11-12 2×4 SPF Jnt -Mat Vert TL L/180 Horz TL 1.00in L/999(-0.00) 5-07-03 923 153 18-11-06 **Member Forces Summary** 9-07-03 471 0 18-11-06 923 153 18-11-06 Max CSI in TC PANEL Max CSI in BC PANEL 13-07-03 **Bracing Data Summary** 11 Chords; continuous except where shown Web Bracing -- None 11 13-07-03 923 153 18-11-06 5 17-11-12 601 36 18-11-06 Max Horiz = -61 / +61 at Joint 9 Reactions not shown: down < 400 and up < 150 ---- Reaction Summary (plf) -----Jnt-Jnt React -Up- --Width-1- 5 20 0 18-11-06 (reduced) 0.05 Max CSI in Web 0.09 ...Mem... TC 1- 2 2- 3 Comp 178 206 .CSI. 0.46 Plate offsets (X, Y): 150 (None unless indicated below) 3- 4 4- 5 150 206 0.34 112 178 0.46 **Unfactored Reaction Summary** Plate Info 80 8 0.05 Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130 Type Pinned (Wall) Wind 80 Jnt Snow Dead 1490 378 -507 757 6- 7 7- 8 8- 9 80 8 0.04 80 **Loads Summary** 80 0.03 See Loadcase Report for load combinations and additional details. Plate Placement Tol. = 0.250 inches 9-10 8.0 0.03 Plate Rotation Tol. = 5.0


JSI Grip = (INPUT = 0.90)

JSI Metal = (INPUT = 1.00) 5.0 Deg. 10-11 80 0.03 11-12 2- 7 80 0.04 Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Valley Truss application only. Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. 2- 7 0 380 0.06 4-11 196 0.09 Lumber and plating have been applied symmetrically.

RB24003 -Qty: 1 Truss: V2 Customer: GREEN-R-PANEL SID: TID: RB24003 Date: 04 / 02 / 25

------Wind Load Specs-----Design Method = MWFRS
Input pressure = 10.2 psf
Exposure Category = Open
Building Category = Category 2
End Zone = No
Apply to left end vertical = Yes
Apply to right end vertical = Yes Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca

BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 1.25 Case II Truss Weight = 26.8 lb

Page: 1 of 1

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

Truss Mfr. Contact:

TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

Max		in	TC PANEL BC PANEL Web		2 4 2	0.37 0.16 0.04
N TC	Mem. 1- 2-	2	Ten 123 123	Comp 353 353		.CSI. 0.37 0.37
ВC	1- 3- 4-	4	197 197 197	52 52 52		0.16 0.16 0.08
Web	5- 2-	-	197 8	52 362		0.08

Maximum Factored Reaction Summary

		-Reaction Summary(Lbs)	-
Jnt	X-Loc-	React -UpWidthReqd -Mat	
1	1-02-10	691 69 10-11-06	
5	5-07-03	453 0 10-11-06	
3	9-11-12	691 69 10-11-06	
Max	Horiz =	-35 / +35 at Joint 5	
Reac	tions not	shown: down < 400 and up < 150	
	Reaction	Summary (plf)	
Jnt-	Jnt	React -UpWidth-	
1-	3	20 0 10-11-06 (reduced)	

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
	Pinned (Wa	111) 860	218	-292	437

Loads Summary

See Loadcase Report for load combinations and additional details.

Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).

Valley Truss application only.

Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. Lumber and plating have been applied symmetrically.

Deflection Summary

Dellection	Julilling	aiy	
TrussSpan	Limit	Actual(in)	Location
Vert LL	L/360	L/999(-0.00)	6- 3
Vert DL	L/360	L/999(-0.00)	6- 3
Vert TL	L/180	L/999(-0.00)	6- 3
Horz TI.	1 00in	(0 01)	0.T+ 3

Bracing Data Summary

-----Bracing Data-----Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

(None unless indicated below)

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

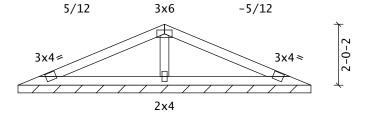
Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

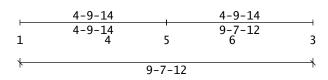
NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18

RB24003 -Qty: 1 Truss: V3 Customer: GREEN-R-PANEL TID: RB24003 Date: 04 / 02 / 25 Truss Mfr. Contact: Page: 1 of 1 5-7-8 4-0-0 4-0-0 5-7-8 5-7-8 13-7-8 9-7-8 19-3-0 1 2 5 3x6 5/12 -5/12 2x4 2x4 4-0-3x4= 3x4 ≈ 2x4 2x4 2x4 5-7-8 4-0-0 4-0-0 5-7-8 5-7-8 6 9-7-8 13-7-8 10 19-3-0 12 7 11 5 19-3-0 Truss Weight = 53.2 lb Building Code: NBCC2015/TPIC2014 Building Category: Part4 - Gyp co Importance Category: Normal ----Snow Load Specs-Snow Ss = 43.9 psf -----Additional Design Checks----2000 lb TC Safe Load: No Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80 Gyp ceiling Unbalanced Snow Loads: Factor Kh applied: Yes
Dur Fac Kd = 1.00 (Snow)
Kd = 1.00 (Live) coading(psf) TCSL(S) wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca TCLL 0.0 TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1 1.25 Case II Material Summary **Deflection Summary Maximum Factored Reaction Summary** TrussSpan Limit Actual(in)
Vert LL L/360 L/999(-0.)
Vert DL L/360 L/999(-0.) SPF Location 2x4L/999(-0.00) 1- 6 L/999(-0.00) 11-12 2×4 SPF Jnt -Mat Vert TL L/180 Horz TL 1.00in L/999(-0.00) **Member Forces Summary** 9-09-00 446 0 19-03-00 927 164 19-03-00 Max CSI in TC PANEL Max CSI in BC PANEL 13-09-00 **Bracing Data Summary** 11 Chords; continuous except where shown Web Bracing -- None 11 13-09-00 92/ 164 19-03-00
5 18-03-06 603 45 19-03-00
Max Horiz = -62 / +62 at Joint 9
Reactions not shown: down < 400 and up < 150
---- Reaction Summary (plf) ---Jnt-Jnt React -Up- --Width1- 5 18 0 19-03-00 (reduced) 6 0.07 Max CSI in Web 0.09 ...Mem... TC 1- 2 2- 3 Comp 195 219 .CSI. 0.48 108 Plate offsets (X, Y): 152 (None unless indicated below) 3- 4 4- 5 152 219 0.35 108 195 0.48 **Unfactored Reaction Summary** Plate Info 90 0.07 Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130 Type Pinned (Wall) Wind 90 Jnt Snow Dead 1513 384 -516 693 6- 7 7- 8 8- 9 90 8 0.05 90 **Loads Summary** 90 0.03 See Loadcase Report for load combinations and additional details. Plate Placement Tol. = 0.250 inches 9-10 90 0.03 Plate Rotation Tol. = 5.0

JSI Grip = (INPUT = 0.90)


JSI Metal = (INPUT = 1.00) 5.0 Deg. 90 10-11 Notes 11-12 2- 7 90 8 0.05 Designed as per NBCC2015/TPIC2014 and applicable provincial codes ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update). Valley Truss application only. Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints. 2- 7 0 365 0.06 4-11 199 0.09 Lumber and plating have been applied symmetrically.


NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by D:\SST_Riverbend\Clie... Component Solutions the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18


RB24003 -Qty: 1 Truss: V4 Customer: GREEN-R-PANEL SID:

TID: RB24003 Date: 04 / 02 / 25 Page: 1 of 1

Truss Mfr. Contact:

Truss Weight = 23.6 lb

Building Code: NBCC2015/TPIC2014
Building Category: Part4 - Gyp ceiling
Importance Category: Normal
Loading(psf) Factor Kh applied: Yes
TCSL(S) 39.3 Dur Fac Kd = 1.00 (Snow)
TCLL 0.0 Kd = 1.00 (Live)
TCDL 10.0 Kd = 1.15 (Wind) BCLL 10.0 Spacing: 2-00-00 oc Plies: 1

Ground Snow Ss = 43.9 psf
Rain Load Sr = 4.2 psf
Importance Factor Is = 1.00
Basic roof snow load factor Cb = 0.80
Wind exposure Cw = 1.00
Slope factor Cs = From Geometry
Slippery roof factor = No
Accumulation factor Ca = 1.0 Case I, Ca = 1.25 Case II 1.25 Case II

-----Additional Design Checks---2000 lb TC Safe Load: Unbalanced Snow Loads:

Material Summary

	• • • • • • • • • • • • • • • • • • • •		
TC	2x4	SPF	#2
BC	2x4	SPF	#2
Webs	2x4	SPF	#2

Member Forces Summary

Max	CSI	in	TC	PANEL	1	-	2	0.26
Max	CSI	in	ВC	PANEL	1	-	4	0.07
Max	CSI	in	Web)	5	-	2	0.03
1	Mem.		Τe	en	Comp	0		.CSI.
TC	1-	2		100	2	39		0.26
	2-	3		100	2	39		0.26
BC	1-	4		111		37		0.07
	3-	6		111		37		0.07
	4-	5		111		37		0.04
	5-	6		111		37		0.04
Web	2-	5		11	3.	53		0.03

Maximum Factored Reaction Summary

		-Reaction Summary(Lbs)	٠-
Jnt	X-Loc-	React -UpWidthReqd -Mat	
1	1-02-10	625 64 9-07-12	
5	4-11-06	440 0 9-07-12	
3	8-08-02	625 64 9-07-12	
Max	Horiz =	-31 / +31 at Joint 5	
Reac	tions not	shown: down < 400 and up < 150	
	Reaction	Summary (plf)	
Jnt-	Jnt	React -UpWidth-	
1-	3	20 0 9-07-12 (reduced)	

Unfactored Reaction Summary

Jnt	Type	Snow	Live	Wind	Dead
	Pinned (Wal	.1) 758	192	-257	385

Loads Summary

See Loadcase Report for load combinations and additional details.

Notes
Designed as per NBCC2015/TPIC2014 and applicable provincial codes
ABC2019, BCBC2018, MBC2018, and OBC2012(Jan 2020 update).
Valley Truss application only.
Plates located at TC pitch breaks meet the prescriptive minimum size requirement to transfer unblocked diaphragm loads across those joints.

Deflection Summary

Delle	CHOIL	Summe	ıı y		
Truss	Span	Limit	Actual(in)	Locat	ior
Vert	LL	L/360	L/999(-0.00)	1-	4
Vert	DL	L/360	L/999(-0.00)	5-	6
Vert	TL	L/180	L/999(-0.00)	1-	4
Horz	TT.	1.00in	(0.00)	a.T+	1

Bracing Data Summary

-----Bracing Data-----Chords; continuous except where shown Web Bracing -- None

Plate offsets (X, Y):

(None unless indicated below)

Plate Info

Plate Grip psi Shear pli Tens.Pli AS Max Min @0 @45 @90 @0 @90 20G 341 249 753 637 589 1144 1130

Plate Placement Tol. = 0.250 inches Plate Rotation Tol. = 5.0 Deg. JSI Grip = (INPUT = 0.90) JSI Metal = (INPUT = 1.00)

NOTICE A copy of this design shall be furnished to the erection contractor. The design of this individual truss is based on design criteria and requirements supplied by the Truss Manufacturer and relies upon the accuracy and completeness of the information set forth by the Building Designer. A seal on this drawing indicates acceptance of professional engineering responsibility solely for the truss component design shown. See the cover page and the "Important Information & General Notes" near for radditional information. All connection plates while the manufactured by Simpson Strong True Company in the information of the connection of Notes" page for additional information. All connector plates shall be manufactured by Simpson Strong-Tie Company, Inc in accordance with CCMC 13326-L & 13418-L. All connector plates are 20 gauge, unless the specified plate size is followed by a "-18" which indicates an 18 gauge plate, or "S# 18", which indicates a high tension 18